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Introduction: In recent work [1-3] we used all 

relevant HiRISE (High Resolution Imaging Science 

Experiment), MOC (Mars Orbiter Camera), THEMIS 

(Thermal Emission Imaging System) and CTX (Con-

text Camera) images in mid Utopia Planitia (UP; ~30-

60
0
N; Fig. 1) to map flat-floored and scalloped depres-

sions, small-sized (~150m) polygonal patterned-

ground and polygon-junction/trough pits (Fig. 2a). On 

Earth, similar landscape-assemblages are periglacial in 

origin and indicative of ice-rich permafrost (ground 

that is permanently frozen for at least two years) [4-5] 

(Fig. 2b). 
 

  
Fig. 1: Location in UP of putative periglacial-landforms 

(areas 2 and 3) and adjacent mantle in red and light blue 

(areas 1 and 2). The background map is a MOLA hillshade 

overlying the principal geological units [6]. 
 

 

 
Fig. 2a: Spatially-associated assemblage of putative perigla-

cial-landforms in mid-UP, Mars (HiRISE PSP_007384_22 

25, 42.20N; 86.30E, ~25cm/pixel. Courtesy of NASA/JPL 

/UofA. Fig. 2b: Thermokarst lake and marginal small-sized 

polygons, some of whose troughs are filled with water. (Tuk-

toyaktuk Coastlands, northern Canada, July 2009).  
 

Intriguingly, the distribution of the putative 

periglacial-landforms (PPLs) stretches well beyond the 

longitudinal and latitudinal margins of the ABa (Fig. 

1); this is the geological unit most often associated 

with periglacialism in UP [i.e. 6-9]. The distribution of 

PPLs also cross cuts regional geological-units that vary 

greatly in age, i.e. HBU1 (early Hesperian) - AEta (late 

Hesperian) - ABa (late Amazonian) [4]. This indicates 

that the landforms are relatively youthful [1-3] al-

though not as youthful as an overlying metres-thick 

high-albedo mantle; this mantle occurs discontinuously 

in area 2 and continuously in area 1 (Fig. 1) [1-3].  

Whether the PPLs form by means of sublimation 

[7-10] or thaw [2,11-13] has been a focus of contro-

versy in the literature for some years. However, in 

either case the origin and evolution of the PPLs re-

quires ground ice or ice-rich regolith. Here, we discuss 

the possibility that the ice-rich regolith in mid-UP 

forms syngenetically in loess-like sediments eroded 

from the North Polar Layered Deposits (NPLDs) and 

transported episodically by wind to the middle lati-

tudes of UP.  

Ground ice and periglacial-landscape evolution 

(Earth): In periglacial landscapes on Earth syngenetic 

permafrost forms when host sediments accumulate and 

freeze quasi-simultaneously during extended periods of 

cold climate-change [14-16]. The latter causes the base 

of the active layer to aggrade upwardly [15].  

Typically, syngenetically-frozen sediments com-

prise wind-blown fines that are silty or loess-like, show 

a regional distribution and extend uniformly from tens 

to hundreds of metres of depth [5,14-16]. Where syn-

genetic permafrost is ubiquitous, i.e. northern Siberia 

[14] and central Alaska [15], periglacial “complexes” 

of thermokarst lakes/alases and ice-wedge polygons 

are commonplace.  

Syngenetic permafrost is well-suited to the devel-

opment of periglacial complexes because the former 

possesses small interstices; this facilitates cryosuction 

and the formation of segregation ice: a lenticular type 

of excess ice [5]. Excess ice, where the presence of 

frozen water equals or exceeds the space available to it 

in a column of soil, is a volumetric term and a sub-

category of ice-rich permafrost or ground ice [5,16] 

Ground ice and periglacial-landscape evolution 

(Mars): If the PPLs in mid-UP are formed by perigla-

cial processes in regolith that is ice-rich, i.e. dominated 

by excess ice, then the thickness of the ice-rich regolith 

25 m 

250 m 
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must be equal to if not greater than the depth of the 

terrain (relative to the elevation datum of the surround-

ing plains) modified by these processes [6]. The 

maximum (calculated) loss of elevation associated 

with the depression/polygon assemblages is ~80m 

[3,10,12-13] As such, this would also be the minimum 

depth of the ice-rich regolith in which the assemblages 

occur.  

Ground-ice formation (Mars): Fig. 1 shows that 

the PPLs in and around mid-UP are located in a tight 

latitudinal-band (40-55
0
N). This could be the geologi-

cal expression of a previously unidentified periglacial-

unit (PUPU) that accumulated by aeolian transport 

during the very late-Amazonian period [1,3] and was 

enriched with ice syngenetically.  

We propose that the aeolian processes responsible 

for the formation of the PUPU constitute two discrete 

but invariably-related cycles: 1. sedimentary; and, 2. 

meteorological. The first cycle entails the episodic (but 

not obliquity-driven) and region-wide accumulation of 

desiccated and fine-grained sediments [17], i.e. sedi-

ments that are low in density, have modest shear 

strength and are low in thermal conductivity [18]. The 

NPLDs are thought to comprise sediments of this type 

[18] and, under the influence of strongly erosive kata-

batic-winds, could be the source of fines in mid-UP. 

Possible evidence of these fines has been discussed 

recently by Séjourné et al. [19]. They suggest that the 

regionally ubiquitous flat-floored depressions comprise 

fine-grained sediments that vary in ice content and in 

their susceptibility to sublimation. Accordingly, the 

step-like profiles observed within many of the depres-

sions are layered markers of differential sublimation 

[19].  

The second cycle also is regional in breadth, in-

volves the episodic precipitation of atmospheric vola-

tiles and is possibly linked to very late-Amazonian 

excursions of obliquity [20]. We propose that the ac-

cumulation of “dry” fines and of “wet” volatiles is 

intertwined inextricably and linked syngenetically by 

means of thaw-freeze cycling.  

“Wet” or “Dry” syngenesis: On Earth, periglacial 

complexes of the type putatively identified in mid-UP 

have been observed in periglacial regions with three 

principal characteristics: (a) ice-rich permafrost tens to 

hundreds of metres thick; (b) the ice-rich permafrost 

comprises fine-grained sediments often transported and 

deposited by the work of wind; and, (c) these fines 

were wetted in situ, i.e. by the seasonal thaw of surface 

snow or ice, and subsequently became frozen in situ as 

annual mean- temperatures fell [5,14-15]. 

Syngenetic ice-rich permafrost also occurs in the 

McMurdo Dry Valleys of the Antarctic [21-22]. The 

ice-rich permafrost is shallow and extends no further 

than a metre from the surface [21-22]. Moreover, as it 

formed when air/soil temperatures were below 0
0
C, the 

ice enrichment of these otherwise “dry” sediments 

would have taken place by means of diffusive ex-

changes with the atmosphere and phases changes 

driven by seasonal temperature-variations [21-22]. No 

periglacial complexes such as those found in northern 

Siberia or central Alaska have been observed in the 

McMurdo Dry Valleys. 

Further work is required to evaluate whether thick 

columns of syngenetic and ice-rich permafrost, the 

essential building block of periglacial complexes on 

Earth, can be formed by vapour diffusion on Mars. 

References: [1] Soare, R.J. and Osinski, G.R. 

(2009). Icarus 202 (1) doi:10.1016/j.icarus.2009.02. 

009. [2] Soare, R.J. et al. (2011). GSA, Special Issue 

483, doi:10.1130/2011.248 (13). [3] Soare, R.J. et al. 

(2012). PSS, doi:10.1016/j.pss.2011.07.007. [4] Mac-

kay, J.R. (1998). Géographie physique et Quaternaire 

52 (3) 1-53. [5] French, H.M. (1996). The periglacial 

environment, Longman, Harrow, 341 p. [6] Tanaka, 

K.L. et al. (2005). USGS, Map 2888. [7] Morgenstern, 

A. et al. (2007). JGR 12 (EO6010) doi:10.1029/2006 

JE0 02869. [8] Lefort, A. et al. (2009). 114 (EO4005) 

doi: 10.1029/2008JE003264. [9] Zanetti, M. et al. 

(2010). Icarus 206 (2) doi:10.1016/j.icarus. 2009. 

09.010. [10] Séjourné, A. et al. (2011). PSS, 59 (5-6) 

doi:10.1016/j.pss.2011.01.007. [11] Costard, F. and 

Kargel, J.S. (1995). Icarus 114 (1) 93-122. [12] Soare, 

R.J. et al. (2007). Icarus 191 (1) doi:10.1016/j.icarus. 

2007.04.018. [13] Soare, R.J. et al. (2008). EPSL 272 

(1-2) doi:10.1016/j.epsl.2008.05.010. [14] Schirrmeis-

ter, L. et al. (2002). Int. J. of Earth Sciences 91, doi:10. 

1007/s005310100205. [15] Bjella, K.L. et al. (2008). 

Guidebook, CRREL Permafrost Tunnel, Fox, Alaska, 

9
th

 Int’l Permaf. Conf., Fairbanks, Alaska. [16] Harris, 

S.A. et al. (1988). Glossary of permafrost and related 

ground ice terms, Tech. Memo. # 142, NRC, Canada. 

[17] Skinner, J.A. and Tanaka, K.L. (2001). LPS 

XXXII, # 2154. [18] Johnson, J.B. and Lorenz, R.B. 

(2000). GRL 27 (17) 2769-2772. [19] Séjourné, A. et 

al. (2012). PSS 60, 248-254, doi:10.1016/pss. 2011.09. 

004. [20] Madeleine, J.B. et al. (2009). Icarus 203 (2) 

doi:10.1016/j.icarus.04.037. [21] Lacelle, D. et al. 

(2011). 5
th

 Mars Polar Science Conference, Fairbanks, 

Alaska, # 6083. [22] Marinova, M.M. et al. (2011). 5
th
 

Mars Polar Science Conference, Fairbanks, Alaska, # 

6051. 

 

1311.pdf43rd Lunar and Planetary Science Conference (2012)


