294 research outputs found

    Assessment of the effects of ozone exposure and plant competition on the reproductive ability of three therophytic clover species from Iberian pastures

    Get PDF
    Ozone (O3) phytototoxicity has been reported on a wide range of crops and wild Central European plantspecies, however no information has been provided regarding the sensitivity of plantspecies from dehesa Mediterranean therophytic grasslands in spite of their great plantspecies richness and the high O3 levels that are recorded in this area. A study was carried out in open-top chambers (OTCs) to assess the effects of O3 and competition on the reproductiveability of threecloverspecies: Trifolium cherleri, Trifolium subterraneum and Trifolium striatum. A phytometer approach was followed, therefore plants of these species were grown in mesoscosms composed of monocultures of four plants of each species, of threeplants of each species competing against a Briza maxima individual or of a single plant of each cloverspecies competing with threeB. maximaplants. Three O3 treatments were adopted: charcoal filtered air (CFA), non-filtered air (NFA) and non-filtered air supplemented with 40 nl l−1 of O3 (NFA+). The different mesocosms were exposed to the different O3 treatments for 45 days and then they remained in the open. Ozoneexposure caused reductions in the flower biomass of the threecloverspecies assessed. In the case of T. cherleri and T. subterraneum this effect was found following their exposure to the different O3 treatments during their vegetative period. An attenuation of these effects was found when the plants remained in the open. Ozone-induced detrimental effects on the seed output of T. striatum were also observed. The flower biomass of the cloverplants grown in monocultures was greater than when competing with one or threeB. maxima individuals. An increased flower biomass was found in the CFA monoculture mesocosms of T. cherleri when compared with the remaining mesocosms, once the plants were exposed in the open for 60 days. The implications of these effects on the performance of dehesa acid grasslands and for the definition of O3 critical levels is discusse

    Experiment Designs to Evaluate Inter- and Intra-Specific Interactions in Mixed Plantings of Forest Trees

    Get PDF
    A review of three mixed-species trials reveals the utility of competition indices for evaluating inter- and intra-specific interactions between trees, the desirability of experiments that span a range of tree spacing and composition to inform calibration of these competition indices, the need for extremes of species composition and stand density to calibrate response surfaces, and the far-reaching impact of edge-effects. Experiment layouts commonly used for mixed-species trials in forestry (such as replacement series) rarely provide a strong basis to calibrate competition indices and response surfaces. Alternative designs involving systematic changes in species composition may offer a better basis for calibrating response surfaces, especially when used in conjunction with designs that vary tree spacing systematically. Systematic spacing designs (such as Pudden clinal plots, Marynen plaids and Nelder fans) are well established, but designs that vary composition systematically are less common. The Goelz triangle and an alternative are contrasted to illustrate how both may offer inspiration when designing trials for mixed-species research in forestry

    C4 photosynthesis boosts growth by altering physiology, allocation and size.

    Get PDF
    C4 photosynthesis is a complex set of leaf anatomical and biochemical adaptations that have evolved more than 60 times to boost carbon uptake compared with the ancestral C3 photosynthetic type(1-3). Although C4 photosynthesis has the potential to drive faster growth rates(4,5), experiments directly comparing C3 and C4 plants have not shown consistent effects(1,6,7). This is problematic because differential growth is a crucial element of ecological theory(8,9) explaining C4 savannah responses to global change(10,11), and research to increase C3 crop productivity by introducing C4 photosynthesis(12). Here, we resolve this long-standing issue by comparing growth across 382 grass species, accounting for ecological diversity and evolutionary history. C4 photosynthesis causes a 19-88% daily growth enhancement. Unexpectedly, during the critical seedling establishment stage, this enhancement is driven largely by a high ratio of leaf area to mass, rather than fast growth per unit leaf area. C4 leaves have less dense tissues, allowing more leaves to be produced for the same carbon cost. Consequently, C4 plants invest more in roots than C3 species. Our data demonstrate a general suite of functional trait divergences between C3 and C4 species, which simultaneously drive faster growth and greater investment in water and nutrient acquisition, with important ecological and agronomic implications

    Identifying causes of low persistence of perennial ryegrass (Lolium perenne) dairy pasture using the Basic Grassland model (BASGRA)

    Get PDF
    Recent years have seen a decline in herbage production and tiller populations in New Zealand's perennial ryegrass (Lolium perenne) dairy pastures. One hypothesis is that modern genotypes are less suited to the warmer, drier weather experienced under changing climate patterns. In this study, a combination of long‐term trial data (2011–2017) and a process‐based pasture model (BASGRA) was used to explore the causes and possible mitigation of the observed production and population loss at three sites (dryland sites in Northland and Waikato and an irrigated site in Canterbury). Bayesian calibration was used to identify the model parameter sets that were consistent with the trial data and to identify differences in plant morphology and responses between sites. The model successfully simulated the observed differences in tiller numbers between the dryland sites, where populations and production declined rapidly after the second year and the irrigated site where populations and production were maintained. Analysis of the model calibrations along with preliminary scenario simulations suggests that increased tiller mortality associated with drought was the main cause of persistence failure at the dryland sites and that decreasing grazing pressure or breeding for tolerance to higher temperatures may not be successful in preventing this

    The evolutionary ecology of C-4 plants

    Get PDF
    C4 photosynthesis is a physiological syndrome resulting from multiple anatomical and biochemical components, which function together to increase the CO2 concentration around Rubisco and reduce photorespiration. It evolved independently multiple times and C4 plants now dominate many biomes, especially in the tropics and subtropics. The C4 syndrome comes in many flavours, with numerous phenotypic realizations of C4 physiology and diverse ecological strategies. In this work, we analyse the events that happened in a C3 context and enabled C4 physiology in the descendants, those that generated the C4 physiology, and those that happened in a C4 background and opened novel ecological niches. Throughout the manuscript, we evaluate the biochemical and physiological evidence in a phylogenetic context, which demonstrates the importance of contingency in evolutionary trajectories and shows how these constrained the realized phenotype. We then discuss the physiological innovations that allowed C4 plants to escape these constraints for two important dimensions of the ecological niche – growth rates and distribution along climatic gradients. This review shows that a comprehensive understanding of C4 plant ecology can be achieved by accounting for evolutionary processes spread over millions of years, including the ancestral condition, functional convergence via independent evolutionary trajectories, and physiological diversification
    corecore