143 research outputs found

    Power-Law Persistence in the Atmosphere: Analysis and Applications

    Full text link
    We review recent results on the appearance of long-term persistence in climatic records and their relevance for the evaluation of global climate models and rare events.The persistence can be characterized, for example, by the correlation C(s) of temperature variations separated by s days.We show that, contrary to previous expectations, C(s) decays for large s as a power law, C(s) ~ s^(-gamma). For continental stations, the exponent gamma is always close to 0.7, while for stations on islands gamma is around 0.4. In contrast to the temperature fluctuations, the fluctuations of the rainfall usually cannot be characterized by long-term power-law correlations but rather by pronounced short-term correlations. The universal persistence law for the temperature fluctuations on continental stations represents an ideal (and uncomfortable) test-bed for the state of-the-art global climate models and allows us to evaluate their performance. In addition, the presence of long-term correlations leads to a novel approach for evaluating the statistics of rare events.Comment: 12 pages, 6 included EPS figures, added chapter

    Phase Synchronization in Temperature and Precipitation Records

    Get PDF
    We study phase synchronization between atmospheric variables such as daily mean temperature and daily precipitation records. We find significant phase synchronization between records of Oxford and Vienna as well as between the records of precipitation and temperature in each city. To find the time delay in the synchronization between the records we study the time lag phase synchronization when the records are shifted by a variable time interval of days. We also compare the results of the method with the classical cross-correlation method and find that in certain cases the phase synchronization yields more significant results.Comment: 11 pages including 8 figure

    Volatility in atmospheric temperature variability

    Full text link
    Using detrended fluctuation analysis (DFA), we study the scaling properties of the volatility time series Vi=Ti+1TiV_i=| T_{i+1}-T_i| of daily temperatures TiT_i for ten chosen sites around the globe. We find that the volatility is long range power-law correlated with an e xponent γ\gamma close to 0.8 for all sites considered here. We use this result to test the scaling performance of several state-of-the art global climate models and find that the models do not reproduce the observed scaling behavior.Comment: 10 pages, 3 figures. Accepted for publication in Physica

    Appropriateness of correlated first order auto-regressive processes for modeling daily temperature records

    Full text link
    The present study investigates linear and volatile (nonlinear) correlations of first-order autoregressive process with uncorrelated AR (1) and long-range correlated CAR (1) Gaussian innovations as a function of the process parameter (θ\theta). In the light of recent findings \cite{jano}, we discuss the choice of CAR (1) in modeling daily temperature records. We demonstrate that while CAR (1) is able to capture linear correlations it is unable to capture nonlinear (volatile) correlations in daily temperature records.Comment: Accepted for publication in Physica

    Comment on "Scaling of atmosphere and ocean temperature correlations in observations and climate models"

    Full text link
    In a recent letter [K. Fraedrich and R. Blender, Phys. Rev. Lett. 90, 108501 (2003)], Fraedrich and Blender studied the scaling of atmosphere and ocean temperature. They analyzed the fluctuation functions F(s) ~ s^alpha of monthly temperature records (mostly from grid data) by using the detrended fluctuation analysis (DFA2) and claim that the scaling exponent alpha over the inner continents is equal to 0.5, being characteristic of uncorrelated random sequences. Here we show that this statement is (i) not supported by their own analysis and (ii) disagrees with the analysis of the daily observational data from which the grid monthly data have been derived. We conclude that also for the inner continents, the exponent is between 0.6 and 0.7, similar as for the coastline-stations.Comment: 1 page with 2 figure

    Long term persistence in the sea surface temperature fluctuations

    Full text link
    We study the temporal correlations in the sea surface temperature (SST) fluctuations around the seasonal mean values in the Atlantic and Pacific oceans. We apply a method that systematically overcome possible trends in the data. We find that the SST persistence, characterized by the correlation C(s)C(s) of temperature fluctuations separated by a time period ss, displays two different regimes. In the short-time regime which extends up to roughly 10 months, the temperature fluctuations display a nonstationary behavior for both oceans, while in the asymptotic regime it becomes stationary. The long term correlations decay as C(s)sγC(s) \sim s^{-\gamma} with γ0.4\gamma \sim 0.4 for both oceans which is different from γ0.7\gamma \sim 0.7 found for atmospheric land temperature.Comment: 14 pages, 5 fiure

    Power-law persistence and trends in the atmosphere: A detailed study of long temperature records

    Full text link
    We use several variants of the detrended fluctuation analysis to study the appearance of long-term persistence in temperature records, obtained at 95 stations all over the globe. Our results basically confirm earlier studies. We find that the persistence, characterized by the correlation C(s) of temperature variations separated by s days, decays for large s as a power law, C(s) ~ s^(-gamma). For continental stations, including stations along the coastlines, we find that gamma is always close to 0.7. For stations on islands, we find that gamma ranges between 0.3 and 0.7, with a maximum at gamma = 0.4. This is consistent with earlier studies of the persistence in sea surface temperature records where gamma is close to 0.4. In all cases, the exponent gamma does not depend on the distance of the stations to the continental coastlines. By varying the degree of detrending in the fluctuation analysis we obtain also information about trends in the temperature records.Comment: 5 pages, 4 including eps figure

    Fractal Analysis of River Flow Fluctuations (with Erratum)

    Get PDF
    We use some fractal analysis methods to study river flow fluctuations. The result of the Multifractal Detrended Fluctuation Analysis (MF-DFA) shows that there are two crossover timescales at s1×12s_{1\times}\sim12 and s2×130s_{2\times}\sim130 months in the fluctuation function. We discuss how the existence of the crossover timescales are related to a sinusoidal trend. The first crossover is due to the seasonal trend and the value of second ones is approximately equal to the well known cycle of sun activity. Using Fourier detrended fluctuation analysis, the sinusoidal trend is eliminated. The value of Hurst exponent of the runoff water of rivers without the sinusoidal trend shows a long range correlation behavior. For the Daugava river the value of Hurst exponent is 0.52±0.010.52\pm0.01 and also we find that these fluctuations have multifractal nature. Comparing the MF-DFA results for the remaining data set of Daugava river to those for shuffled and surrogate series, we conclude that its multifractal nature is almost entirely due to the broadness of probability density function.Comment: 13 pages, 10 figures, V2: Added comments, references and one more figure, improved numerical calculations with new version of data, accepted for publication in Physica A: Statistical Mechanics and its Applications. The version with Erratum contains some notes concerning Ref. [58

    Detecting Long-range Correlations with Detrended Fluctuation Analysis

    Full text link
    We examine the Detrended Fluctuation Analysis (DFA), which is a well-established method for the detection of long-range correlations in time series. We show that deviations from scaling that appear at small time scales become stronger in higher orders of DFA, and suggest a modified DFA method to remove them. The improvement is necessary especially for short records that are affected by non-stationarities. Furthermore, we describe how crossovers in the correlation behavior can be detected reliably and determined quantitatively and show how several types of trends in the data affect the different orders of DFA.Comment: 10 pages, including 8 figure

    Volcanic forcing improves Atmosphere-Ocean Coupled General Circulation Model scaling performance

    Full text link
    Recent Atmosphere-Ocean Coupled General Circulation Model (AOGCM) simulations of the twentieth century climate, which account for anthropogenic and natural forcings, make it possible to study the origin of long-term temperature correlations found in the observed records. We study ensemble experiments performed with the NCAR PCM for 10 different historical scenarios, including no forcings, greenhouse gas, sulfate aerosol, ozone, solar, volcanic forcing and various combinations, such as it natural, anthropogenic and all forcings. We compare the scaling exponents characterizing the long-term correlations of the observed and simulated model data for 16 representative land stations and 16 sites in the Atlantic Ocean for these scenarios. We find that inclusion of volcanic forcing in the AOGCM considerably improves the PCM scaling behavior. The scenarios containing volcanic forcing are able to reproduce quite well the observed scaling exponents for the land with exponents around 0.65 independent of the station distance from the ocean. For the Atlantic Ocean, scenarios with the volcanic forcing slightly underestimate the observed persistence exhibiting an average exponent 0.74 instead of 0.85 for reconstructed data.Comment: 4 figure
    corecore