70 research outputs found

    Inhomogeneous States in a Small Magnetic Disk with Single-Ion Surface Anisotropy

    Full text link
    We investigate analytically and numerically the ground and metastable states for easy-plane Heisenberg magnets with single-ion surface anisotropy and disk geometry. The configurations with two half-vortices at the opposite points of the border are shown to be preferable for strong anisotropy. We propose a simple analytical description of the spin configurations for all values of a surface anisotropy. The effects of lattice pinning leads to appearance of a set of metastable configurations.Comment: 10 pages, 7 figures; submitted to Phys. Rev.

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Timing and pace of dairying inception and animal husbandry practices across Holocene North Africa

    Get PDF
    The timing and extent of the adoption and exploitation of domesticates and their secondary products, across Holocene North Africa, has long been the subject of debate. The three distinct areas within the region, Mediterranean north Africa, the Nile Valley and the Sahara, each with extremely diverse environments and ecologies, demonstrate differing trajectories to pastoralism. Here, we address this question using a combination of faunal evidence and organic residue analyses of c. 300 archaeological vessels from sites in Algeria, Libya and Sudan. This synthesis of new and published data provides a broad regional and chronological perspective on the scale and intensity of domestic animal exploitation and the inception of dairying practices in Holocene North Africa. Following the introduction of domesticated animals into the region our results confirm a hiatus of around one thousand years before the adoption of a full pastoral economy, which appears first in the Libyan Sahara, at c. 5200 BCE, subsequently appearing at c. 4600 BCE in the Nile Valley and at 4400–3900 BCE in Mediterranean north Africa

    Plasma Sources in Planetary Magnetospheres: Mercury

    Full text link

    Uma visão sobre qualidade do solo

    Full text link

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Ability to detect and to manipulate HIV evolution

    Full text link

    Retroviral recombination and the production of multiple drug resistant mutants

    Full text link
    corecore