62 research outputs found

    Evolution of carbon fluxes during initial soil formation along the forefield of Damma glacier, Switzerland

    Get PDF
    Soil carbon (C) fluxes, soil respiration and dissolved organic carbon (DOC) leaching were explored along the young Damma glacier forefield chronosequence (7-128years) over a three-year period. To gain insight into the sources of soil CO2 effluxes, radiocarbon signatures of respired CO2 were measured and a vegetation-clipping experiment was performed. Our results showed a clear increase in soil CO2 effluxes with increasing site age from 9±1 to 160±67gCO2-Cm−2year−1, which was linked to soil C accumulation and development of vegetation cover. Seasonal variations of soil respiration were mainly driven by temperature; between 62 and 70% of annual CO2 effluxes were respired during the 4-month long summer season. Sources of soil CO2 effluxes changed along the glacier forefield. For most recently deglaciated sites, radiocarbon-based age estimates indicated ancient C to be the dominant source of soil-respired CO2. At intermediate site age (58-78years), the contribution of new plant-fixed C via rhizosphere respiration amounted up to 90%, while with further soil formation, heterotrophically respired C probably from accumulated ‘older' soil organic carbon (SOC) became increasingly important. In comparison with soil respiration, DOC leaching at 10cm depth was small, but increased similarly from 0.4±0.02 to 7.4±1.6gDOCm−2year−1 over the chronosequence. A strong rise of the ratio of SOC to secondary iron and aluminium oxides strongly suggests that increasing DOC leaching with site age results from a faster increase of the DOC source, SOC, than of the DOC sink, reactive mineral surfaces. Overall, C losses from soil by soil respiration and DOC leaching increased from 9±1 to 70±17 and further to 168±68gCm−2year−1 at the <10, 58-78, and 110-128year old sites. By comparison, total ecosystem C stocks increased from 0.2 to 1.1 and to 3.1kgCm−2 from the young to intermediate and old sites. Therefore, the ecosystem evolved from a dominance of C accumulation in the initial phase to a high throughput system. We suggest that the relatively strong increase in soil C stocks compared to C fluxes is a characteristic feature of initial soil formation on freshly exposed rock

    Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas

    Get PDF
    Sources and timing of freshwater forcing relative to hydroclimate shifts recorded in Greenland ice cores at the onset of Younger Dryas, ∼12,800 years ago, remain speculative. Here we show that progressive Fennoscandian Ice Sheet (FIS) melting 13,100–12,880 years ago generates a hydroclimate dipole with drier–colder conditions in Northern Europe and wetter–warmer conditions in Greenland. FIS melting culminates 12,880 years ago synchronously with the start of Greenland Stadial 1 and a large-scale hydroclimate transition lasting ∼180 years. Transient climate model simulations forced with FIS freshwater reproduce the initial hydroclimate dipole through sea-ice feedbacks in the Nordic Seas. The transition is attributed to the export of excess sea ice to the subpolar North Atlantic and a subsequent southward shift of the westerly winds. We suggest that North Atlantic hydroclimate sensitivity to FIS freshwater can explain the pace and sign of shifts recorded in Greenland at the climate transition into the Younger Dryas

    Modes of carbon fixation in an arsenic and CO<sub>2</sub>-rich shallow hydrothermal ecosystem

    Get PDF
    Abstract The seafloor sediments of Spathi Bay, Milos Island, Greece, are part of the largest arsenic-CO2-rich shallow submarine hydrothermal ecosystem on Earth. Here, white and brown deposits cap chemically distinct sediments with varying hydrothermal influence. All sediments contain abundant genes for autotrophic carbon fixation used in the Calvin-Benson-Bassham (CBB) and reverse tricaboxylic acid (rTCA) cycles. Both forms of RuBisCO, together with ATP citrate lyase genes in the rTCA cycle, increase with distance from the active hydrothermal centres and decrease with sediment depth. Clustering of RuBisCO Form II with a highly prevalent Zetaproteobacteria 16S rRNA gene density infers that iron-oxidizing bacteria contribute significantly to the sediment CBB cycle gene content. Three clusters form from different microbial guilds, each one encompassing one gene involved in CO2 fixation, aside from sulfate reduction. Our study suggests that the microbially mediated CBB cycle drives carbon fixation in the Spathi Bay sediments that are characterized by diffuse hydrothermal activity, high CO2, As emissions and chemically reduced fluids. This study highlights the breadth of conditions influencing the biogeochemistry in shallow CO2-rich hydrothermal systems and the importance of coupling highly specific process indicators to elucidate the complexity of carbon cycling in these ecosystems

    Compound-specific radiocarbon dating of the varved Holocene sedimentary record of Saanich Inlet, Canada

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA2012, doi:10.1029/2003PA000927.The radiocarbon contents of various biomarkers extracted from the varve-counted sediments of Saanich Inlet, Canada, were determined to assess their applicability for dating purposes. Calibrated ages obtained from the marine planktonic archaeal biomarker crenarchaeol compared favorably with varve-count ages. The same conclusion could be drawn for a more general archaeal biomarker (GDGT-0), although this biomarker proved to be less reliable due to its less-specific origin. The results also lend support to earlier indications that marine crenarchaeota use dissolved inorganic carbon (DIC) as their carbon source. The average reservoir age offset ΔR of 430 years, determined using the crenarchaeol radiocarbon ages, varied by ±110 years. This may be caused by natural variations in ocean-atmosphere mixing or upwelling at the NE Pacific coast but variability may also be due to an inconsistency in the marine calibration curve when used at sites with high reservoir ages.This work was supported by the Netherlands Organization for Scientific Research (NWO) and NSF grants OCE-9907129 and OCE-0137005 (Eglinton)

    Origins of archaeal tetraether lipids in sediments : insights from radiocarbon analysis

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 72 (2008): 4577-4594, doi:10.1016/j.gca.2008.06.021.Understanding the supply and preservation of glycerol dibiphytanyl glycerol tetraethers (GDGTs) in marine sediments helps inform their use in paleoceanography. Compound-specific radiocarbon measurements of sedimentary alkenones from multiple environments have been used to gain insight into processes that affect paleo-temperature reconstructions. Similar analyses are warranted to investigate how analogous processes affecting GDGTs impact TEX86 paleotemperatures. Here we present radiocarbon measurements on individual GDGTs from Bermuda Rise and Santa Monica Basin sediments and discuss the results in the context of previous studies of co-depositional alkenones and foraminifera. The 149 C contents of GDGTs and planktonic foraminifera in Bermuda Rise are very similar, suggesting a local source; and TEX86- derived temperatures agree more closely with foraminiferal temperatures than do temperatures. In contrast, GDGTs in Santa Monica Basin are depleted in 1412 C relative to both alkenones and foraminifera, and TEX86 temperatures agree poorly with known surface water values. We propose three possible factors that could explain these results: (i) GDGTs may be labile relative to alkenones during advective transport through oxic waters; (ii) archaeal production deep in the water column may contribute 1416 C-depleted GDGTs to sediments; and (iii) some GDGTs also may derive from sedimentary archaeal communities. Each of these three processes is likely to occur with varying relative importance depending on geographic location. The latter two may help to explain why TEX86 temperature reconstructions from Santa Monica Basin do not appear to reflect actual sea surface temperatures. Terrigenous GDGTs are unlikely to be major contributors to Bermuda Rise or Santa Monica Basin sediments, based on values of the BIT index. The results also indicate that the crenarchaeol regioisomer is governed by processes different from other GDGTs. Individual measurements of the crenarchaeol regioisomer are significantly depleted in 1424 C relative to co-occurring GDGTs, indicating an alternative origin for this compound that presently remains unknown. Re-examination of the contribution of crenarchaeol regioisomer to the TEX86 index shows that it is a significant influence on the sensitivity of temperature reconstructions.This work was supported by the David & Lucille Packard Foundation and by NSF-OCE-0241363 and EAR-0311937 (to A.P.)

    An interlaboratory study of TEX86 and BIT analysis using high-performance liquid chromatography–mass spectrometry

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 10 (2009): Q03012, doi:10.1029/2008GC002221.Recently, two new proxies based on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) were proposed, i.e., the TEX86 proxy for sea surface temperature reconstructions and the BIT index for reconstructing soil organic matter input to the ocean. In this study, fifteen laboratories participated in a round robin study of two sediment extracts with a range of TEX86 and BIT values to test the analytical reproducibility and repeatability in analyzing these proxies. For TEX86 the repeatability, indicating intra-laboratory variation, was 0.028 and 0.017 for the two sediment extracts or ±1–2°C when translated to temperature. The reproducibility, indicating among-laboratory variation, of TEX86 measurements was substantially higher, i.e., 0.050 and 0.067 or ±3–4°C when translated to temperature. The latter values are higher than those obtained in round robin studies of Mg/Ca and U37 k′ paleothermometers, suggesting the need to primarily improve compatibility between labs. The repeatability of BIT measurements for the sediment with substantial amounts of soil organic matter input was relatively small, 0.029, but reproducibility was large, 0.410. This large variance could not be attributed to specific equipment used or a particular data treatment. We suggest that this may be caused by the large difference in the molecular weight in the GDGTs used in the BIT index, i.e., crenarchaeol versus the branched GDGTs. Potentially, this difference gives rise to variable responses in the different mass spectrometers used. Calibration using authentic standards is needed to establish compatibility between labs performing BIT measurements

    Pollen, biomarker and stable isotope evidence of late Quaternary environmental change at Lake McKenzie, southeast Queensland

    Get PDF
    Unravelling links between climate change and vegetation response during the Quaternary is important if the climate–environment interactions of modern systems are to be fully understood. Using a sediment core from Lake McKenzie, Fraser Island, we reconstruct changes in the lake ecosystem and surrounding vegetation over the last ca. 36.9 cal kyr. Evidence is drawn from multiple sources, including pollen, micro-charcoal, biomarker and stable isotope (C and N) analyses, and is used to gain a better understanding of the nature and timing of past ecological changes that have occurred at the site. The glacial period of the record, from ca. 36.9 to 18.3 cal kyr BP, is characterised by an increased abundance of plants of the aquatic and littoral zone, indicating lower lake water levels. High abundance of biomarkers and microfossils of the colonial green alga Botryococcus occurred at this time and included large variation in individual botryococcene d13C values. A slowing or ceasing of sediment accumulation occurred during the time period from ca. 18.3 to 14.0 cal kyr BP. By around 14.0 cal kyr BP fire activity in the area was reduced, as was abundance of littoral plants and terrestrial herbs, suggesting wetter conditions from that time. The Lake McKenzie pollen record conforms to existing records from Fraser Island by containing evidence of a period of reduced effective precipitation that commenced in the mid-Holocene

    An interlaboratory study of TEX86 and BIT analysis of sediments, extracts and standard mixtures.

    Get PDF
    Two commonly used proxies based on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) are the TEX86 (TetraEther indeX of 86 carbon atoms) paleothermometer for sea surface temperature reconstructions and the BIT (Branched Isoprenoid Tetraether) index for reconstructing soil organic matter input to the ocean. An initial round-robin study of two sediment extracts, in which 15 laboratories participated, showed relatively consistent TEX86 values (reproducibility ±3-4°C when translated to temperature) but a large spread in BIT measurements (reproducibility ±0.41 on a scale of 0-1). Here we report results of a second round-robin study with 35 laboratories in which three sediments, one sediment extract, and two mixtures of pure, isolated GDGTs were analyzed. The results for TEX86 and BIT index showed improvement compared to the previous round-robin study. The reproducibility, indicating interlaboratory variation, of TEX86 values ranged from 1.3 to 3.0°C when translated to temperature. These results are similar to those of other temperature proxies used in paleoceanography. Comparison of the results obtained from one of the three sediments showed that TEX86 and BIT indices are not significantly affected by interlaboratory differences in sediment extraction techniques. BIT values of the sediments and extracts were at the extremes of the index with values close to 0 or 1, and showed good reproducibility (ranging from 0.013 to 0.042). However, the measured BIT values for the two GDGT mixtures, with known molar ratios of crenarchaeol and branched GDGTs, had intermediate BIT values and showed poor reproducibility and a large overestimation of the "true" (i.e., molar-based) BIT index. The latter is likely due to, among other factors, the higher mass spectrometric response of branched GDGTs compared to crenarchaeol, which also varies among mass spectrometers. Correction for this different mass spectrometric response showed a considerable improvement in the reproducibility of BIT index measurements among laboratories, as well as a substantially improved estimation of molar-based BIT values. This suggests that standard mixtures should be used in order to obtain consistent, and molar-based, BIT values

    Direct application of compound-specific radiocarbon analysis of leaf waxes to establish lacustrine sediment chronology

    Get PDF
    Author Posting. © Springer, 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Paleolimnology 39 (2008): 43-60, doi:10.1007/s10933-007-9094-1.This study demonstrates use of compound-specific radiocarbon analysis (CSRA) for dating Holocene lacustrine sediments from carbonate-hosted Ordy Pond, Oahu, Hawaii. Long-chain odd-numbered normal alkanes (n-alkanes), biomarkers characteristic of terrestrial higher plants, were ubiquitous in Ordy Pond sediments. The δ13C of individual n-alkanes ranged from −29.9 to −25.5‰, within the expected range for n-alkanes synthesized by land plants using the C3 or C4 carbon fixation pathway. The 14C ages of n-alkanes determined by CSRA showed remarkably good agreement with 14C dates of rare plant macrofossils obtained from nearby sedimentary horizons. In general, CSRA of n-alkanes successfully refined the age-control of the sediments. The sum of n-alkanes in each sample produced 70–170 μg of carbon (C), however, greater age errors were confirmed for samples containing less than 80 μg of C. The 14C age of n-alkanes from one particular sedimentary horizon was 4,155 years older than the value expected from the refined age-control, resulting in an apparent and arguable age discrepancy. Several lines of evidence suggest that this particular sample was contaminated by introduction of 14C-free C during preparative capillary gas chromatography. This study simultaneously highlighted the promising potential of CSRA for paleo-applications and the risks of contamination associated with micro-scale 14C measurement of individual organic compounds.This project was funded by Petroleum Research Fund (PRF #40088-ACS) and in part by Sigma Xi, The Scientific Research Society (Grants in aid of research, 2003)
    corecore