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Fennoscandian freshwater control on Greenland
hydroclimate shifts at the onset of the Younger
Dryas
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Sources and timing of freshwater forcing relative to hydroclimate shifts recorded in Greenland

ice cores at the onset of Younger Dryas, B12,800 years ago, remain speculative. Here we

show that progressive Fennoscandian Ice Sheet (FIS) melting 13,100–12,880 years ago

generates a hydroclimate dipole with drier–colder conditions in Northern Europe and

wetter–warmer conditions in Greenland. FIS melting culminates 12,880 years ago synchro-

nously with the start of Greenland Stadial 1 and a large-scale hydroclimate transition lasting

B180 years. Transient climate model simulations forced with FIS freshwater reproduce the

initial hydroclimate dipole through sea-ice feedbacks in the Nordic Seas. The transition is

attributed to the export of excess sea ice to the subpolar North Atlantic and a subsequent

southward shift of the westerly winds. We suggest that North Atlantic hydroclimate sensi-

tivity to FIS freshwater can explain the pace and sign of shifts recorded in Greenland at the

climate transition into the Younger Dryas.
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T
he Younger Dryas cold stadial (YD; B12,800–11,650 year
BP) is the latest major large-scale climate shift in the North
Atlantic domain, providing an exceptional natural labora-

tory to improve our understanding of rapid climate change. The
conventional explanation for the YD involves a catastrophic
meltwater outburst from the Laurentian Ice Sheet into the North
Atlantic that triggered a widespread reorganization of the
atmosphere–ocean system1–3. However, the chronological
thread linking Laurentian freshwater events and the timing of
abrupt hydroclimate shifts observed in template records such as
Greenland ice cores still remains equivocal3–7.

Recent studies8–10 have moved away from the classical flood
hypothesis and demonstrated that gradual freshwater input from
the Fennoscandian Ice Sheet (FIS)—rather than from the
Laurentian Ice Sheet—may have been sufficient to trigger cold
stadials during the last glacial cycle. Through southward storm
track shifts, mediated by build-up of sea ice in the Nordic Seas,
FIS meltwater fluxes at the end of interstadials emerge as a critical
factor for reconciling the timing and amplitude of the rapid
interstadial/stadial transitions observed in Greenland.
Nevertheless, the coherency of these processes during the last
glacial–interglacial transition, the Last Termination, is largely
unexplored. Furthermore, it remains an open question as to what
extent the North Atlantic hydroclimate patterns responded to FIS
freshwater forcing at the inception of the YD.

Here we combine a new hydroclimate reconstruction from
Northern Europe with transient climate model simulations to
show that North Atlantic atmospheric circulation was sensitive to
FIS meltwater at the end of the Last Termination. Our
conclusions are critical for the interpretation of Greenland ice-
core records and could help to target future paleoclimate model
simulations.

Results
FIS meltwater signal propagation into hydroclimate records. In
this study, we reconstruct the regional sequence of hydroclimate
events at the onset of the YD using the hydrogen isotope
composition of lipid biomarker records from Hässeldala Port
(HÄ) lake sediments, Southern Sweden. HÄ is a small ancient
lake11,12 located along the south coast of Sweden (56�160 N;
15�030 E) and downwind of the primary drainage route of the FIS
(Fig. 1). Under modern conditions, precipitation is delivered to
HÄ by the prevailing westerly winds mainly from the North Sea,
the Skagerrak–Kattegat basin and from local continental sources
(Fig. 1a). On the other hand, moist air from the Baltic Sea only
occurs under exceptionally warm surface water conditions13. At
multidecadal scales, the amount of moisture transported to HÄ
from marine sources primarily depends on surface-water
temperatures, which control water-to-air vapour fluxes
(Fig. 1b). During the Last Termination, moisture transport
from the ice-dammed Baltic Ice Lake14 was probably negligible
owing to low surface temperatures of glacial lake waters inhibiting
moisture fluxes, and to the dominant westerly winds15 (Fig. 1c).
Therefore, hydroclimate proxies from HÄ sediments are ideally
suited for reconstructing the signal of FIS meltwater flux to the
adjacent seaboard of the Nordic Seas (Fig. 1d) integrated as
isotopic depletions in the hydrogen stable isotope composition of
the target precipitation.

Proxy records and meltwater reconstruction. We analysed the
dD composition of n-C21 and n-C27-29-31 alkanes (Methods;
Supplementary Figs 1 and 2; Supplementary Data 1), which in
HÄ sediments are representative components of distinct aquatic
and terrestrial sources, respectively (Supplementary Discussion).
dD values of aquatic (dDaq) and terrestrial (dDterr) n-alkanes are

established indicators of the isotopic composition of summer
precipitation dD (refs 16,17), which is controlled—at mid-to-high
latitudes—by condensation temperature and moisture source
composition18. Furthermore, dDterr can offset dDaq owing to
evaporative enrichment (DdDterr� aq) due to the combined
effect of soil evaporation and leaf water transpiration,
evapotranspiration, thus serving as an indicator of moisture
availability and relative humidity19 (Supplementary Figs 3 and 4).

The interpretation of the biomarker record is supported by
quantitative summer temperature estimations based on
fossil chironomids (Methods; Supplementary Data 1).
Moreover, HÄ’s chronology is based on an age-depth model
of 49 AMS 14C dates covering B4,000 years (Methods;
Supplementary Figs 5–7; Supplementary Table 1). After the
recent synchronization of the 14C and ice-core time scales using
the common cosmogenic radionuclide variations20 (Supple-
mentary Methods), the age-depth model allows for a consistent
and accurate comparison to Greenland stratigraphic events.
Hence, HÄ proxies are here compared to NGRIP d18O
records21 and all ice-core ages are hereafter reported as
calibrated 14C years before 1950 (BP).

To better decipher the regional hydroclimate expressions in
Greenland and Northern Europe and their potential links, we also
compare the NGRIP deuterium excess d (ref. 22) and GRIP snow
accumulation rates23 with HÄ dDaq and DdDterr� aq records. The
d-excess provides information on the Greenland’s moisture
source and summer precipitation rates24. The dDaq is
interpreted here as a proxy for changes in precipitation-source
dD after accounting for local hydrologic and vegetation effects
and following correction for global ice volume and isotope
fractionation factors (dDcorr; Supplementary Methods;
Supplementary Fig. 8). The dDcorr records shifts in distillation
of water vapour associated with the marine moisture
source25—primarily the North Sea and the Skagerrak–Kattegat
at the temporal resolution of our records—and associated with
regional land surface recycling of evaporated moisture26.
The dDcorr is largely controlled by FIS loss through the
introduction of isotopically depleted meltwater in the moisture-
source area. Moreover, meltwater discharge causes decreases
in source seawater salinity, surface temperatures, in source
moisture uptake and rainout during transport18, all resulting
in more negative dD of precipitation and drier air reaching
HÄ. Hence, we regard the dDcorr and DdDterr-aq records as
qualitative indicators of FIS freshwater supply to the adjacent
Nordic Seas.

Data interpretation. The HÄ dDaq and DdDterr� aq records show
a remarkable two-step decrease and increase, respectively, starting
shortly before the onset of the YD as defined in the pollenstra-
tigraphy11 (Fig. 2). Similarly, after a B300-year long summer
warming of up to 4 �C during the Allerød pollen zone (AL),
chironomid–inferred temperatures indicate a prominent two-step
cooling preceding the start of the YD (Fig. 2). In the first step
dDaq values start to decrease by 25% at 13,090±37 year BP
(±1s) and reach an isotopic minimum at 12,883±35 year BP.
This dDaq decline coincides with a 27% rise in DdDterr-aq, peaking
at 12,883±35 year BP, and a B2 �C decrease in summer
temperatures (Fig. 2), suggesting substantially drier and colder
summer conditions. After a brief recovery, a second step occurs.
At 12,700±52 year BP, dDaq values decrease again by at least
34%. The drop in dDaq values straddles the pollen–stratigraphic
AL–YD transition, which is a regional marker for major
environmental changes resulted from hemispheric-scale
cooling27 (Fig. 2). This shift coincides with a 26% rise in
DdDterr-aq and a B3 �C decrease in summer temperatures,
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indicating a further change towards drier and colder summer
conditions.

In contrast, the synchronized NGRIP record shows that the
first decline in dDaq values at HÄ coincides with rising d18O
values, corresponding to the warm Greenland Interstadial 1a
(GI-1a). The local dDaq minima and DdDterr-aq maxima at HÄ are
synchronous with the start of the cold Greenland Stadial 1
(GS-1; 12,882±13 year BP; Fig. 2), defined in NGRIP ice cores as
a rapid shift in d-excess22. Conversely, the second decline in dDaq

values at HÄ occurs when NGRIP d18O had already reached
minimum values.

The comparison of HÄ dDcorr and DdDterr-aq records with
NGRIP d-excess and GRIP accumulation rates shows two
separate phases during GI-1a and during the first B180 years
of GS-1 (Fig. 3). Each of these are characterized by a hydroclimate
dipole across the eastern North Atlantic. GI-1a is marked by
increasingly fresher North Sea surface conditions and inhibited
moisture transport to HÄ. This interval coincides with a
progressive north-eastward shift of the North Atlantic source of
Greenland precipitation (more proximal) and with enhanced
moisture transport to the summit24.

At the GI-1a/GS-1 transition, FIS meltwater discharge
culminates and the hydroclimate dipole rapidly inverts its sign,
marking the start of a brief hydroclimatic recovery, which lasted
for B180 years. This B180-year-long interval, which represents
a transitional phase between the onset of GS-1 in Greenland and
North Hemispheric cooling17,27, appears to have been
characterized by a temporary return to more saline conditions
in the North Sea and stronger advection of moisture to HÄ. By
contrast, the moisture source of Greenland precipitation moves
south-westwards (more distant), resulting in less effective
moisture transport to the summit24. This transition has been

attributed to a southward diversion of the westerly winds and
stronger zonal circulation owing to sea-ice expansion in the
North Atlantic17. Consistent with modern observations28,
stronger zonal winds can more efficiently route warm and
saline North Atlantic waters to the North Sea, but also cause a
south-westward shift of Greenland’s precipitation source24.

After the B180-year-long transitional phase and coinciding
with the regional AL–YD pollen-zone boundary, Greenland’s
hydroclimate stabilized to a stadial mode. The establishment of
stadial conditions in Southern Sweden occurred, however, one
century later when progressive freshening of surface waters in the
North Sea caused a gradual drop in summer temperatures and
precipitation (Figs 2 and 3). We interpret these asynchronous
events as an expression of the southward migration of North
Atlantic storm tracks17 coincident with a gradually more
persistent summer sea-ice growth in the Nordic Seas29.

The succession of surface freshening/salification events inferred
from HÄ records through GI-1a and GS-1 is in line with
reconstructions from the Skattegat–Kattegat30, the North Sea31

and the Norwegian Sea29,32. We thus suggest that increasingly
stronger melting of the FIS in response to the Late AL warming
(Fig. 2) played a central role in the hydrological cycle of the
eastern North Atlantic at the transition into the YD climatic
reorganization.

Climate model simulations. To investigate our hypothesis, we
turn to a transient simulation of the last 21,000 years performed
with a coupled atmosphere–ocean climate model33 (Methods).
The model shows great sensitivity of regional climate to a
relatively weak FIS freshwater pulse (0.011 Sv) in the Nordic Seas
during the Late AL. The freshwater forcing generates a summer
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together with climatology of 850 hPa wind fields in the North Atlantic region (NCEP/NCAR; 1979–2009). (b) Climatological field correlations between
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target and surface water temperatures at the marine moisture sources. Significance levels are indicated by black dashed lines (95%). (c) Climatological

850 hPa wind fields during the regional Allerød (black arrows) and Younger Dryas (cyan arrows) pollen zones as modelled in the TraCE simulations33,44.

Location of the NGRIP ice core is indicated. The black box highlights the area shown in d. (d) Location of Hässeldala (red triangle) in Southern Sweden and
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sea-level pressure (SLP) dipole across the North Atlantic with
deeper Icelandic low pressure and higher SLP over Northern
Europe relative to the preceding phase (Fig. 4). The SLP dipole is
a distinct feature in the model and is associated with FIS
meltwater forcing only as it is absent when freshwater is
discharged from North American sources (Fig. 5). The
increased SLP, the surface cooling and the increased sea-ice
cover simulated in the Norwegian and Barents Seas (Fig. 4)
support the B2 �C decline in summer temperatures and
progressively drier conditions recorded at HÄ during GI-1a
(Fig. 2). These results are consistent with evidence of cooling
recorded in other North European records during the same
period27. Furthermore, a deeper Icelandic low pressure suggests a
closer moisture source for Greenland precipitation, which is
consistent with the d18O enrichment in Greenland ice cores
during GI-1a. The model output are further supported by high-
resolution dD records from Meerfelder Maar (MFM) in Western
Europe17, where relatively wetter conditions are inferred during
GI-1a, in contrast to drier conditions in Northern Europe
(Supplementary Discussion; Supplementary Fig. 4).

Discussion
In light of our results we argue that persistent FIS ice-mass loss at
the end of the AL interstadial and the resulting freshening along

the continental shelf of the Nordic Seas, which resulted in an early
stage of cooling in Northern Europe, have likely determined the
timing of hydrological shifts in Greenland at the GI-1a/GS-1
transition. Analogously to mechanisms invoked for the onset of
cold climatic phases during the last glacial cycle9,10 and the
present interglacial34, we posit that when sea ice reached a critical
extent in the North Sea, Norwegian and Barents Seas, the excess
of sea ice was transported to the subpolar North Atlantic via
oceanic recirculation in the Nordic Seas. Potentially a sudden
westward drainage of the Baltic Ice Lake through the south-
central Swedish lowlands, as suggested by the available
chronological evidence relating to deglaciation of the spillway
(Figs 1 and 3; Supplementary Discussion; Supplementary
Methods; Supplementary Fig. 9; Supplementary Table 2), may
have contributed to drive sea ice and freshwater to the western
sector of the Nordic Seas. Recirculation of sea ice in the Nordic
Seas could have delivered ice to the subpolar North Atlantic to
locations beyond the limits expected from local climatological
conditions. The displacement of sea ice would have then caused
the aforementioned southward shift of North Atlantic storm
tracks at the onset of GS-1 and large-scale colder conditions. The
model simulations support this interpretation. High-pressure
anomalies over mid-to-high latitudes take place together with a
westward and southward migration of sea ice in the North
Atlantic (Fig. 5). In contrast, the SLP dipole pattern occurs only
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when sea-ice growth is confined to the eastern sector of the
Nordic Seas (Fig. 4; Supplementary Figs 10 and 11). However,
further studies are required to conclusively attribute a rapid
export of sea-ice excess into the subpolar North Atlantic to a
nonlinear behaviour of sea-ice growth in the eastern Nordic Seas
or to a catastrophic meltwater discharge.

In conclusion, we provide a plausible mechanism for the
linkages between FIS freshwater inputs to the Nordic Seas and
North Atlantic hydroclimate patterns, reconciling the timing of
freshwater forcing with the major isotopic excursions recorded in
Greenland ice cores at the end of the Last Termination.
Altogether, we suggest a new coherent concept for the inception
of GS-1 and ultimately the YD, which may be critical to gauge
future climate simulations.

Methods
Chronology. The chronology was established using a composite Bayesian age
model based on 49 AMS 14C dates from terrestrial plant macrofossils. 21 14C dates
were transferred from a previously studied core35 by correlating total organic
content records via a Monte Carlo alignment method12. At HÄ, core correlation is
facilitated by the small size of the basin, which extends over an area of
approximately 20m2, resulting in total organic content records from adjacent cores
to exhibit the same high resolution and identifiable lithostratigraphic patterns (for
example, ref. 12).

Lipid biomarker analysis. Fifty-four freeze-dried samples (B8 cm3) were
extracted from the sediments via sonication with dichloromethane: methanol (9:1)
for 20min; and subsequent centrifugation. This was repeated three times and
supernatants were combined. Aliphatic hydrocarbon fractions were isolated from
the total lipid extract using silica gel columns (5% deactivated) that were eluted
with pure hexane. The saturated hydrocarbon fraction was separated by

desulphurization over 10% AgNO3–SiO2 silica gel using pure hexane as eluent.
Saturated hydrocarbon fractions were analysed by gas chromatography—mass
spectrometry for identification and quantification, using a Shimadzu GCMS-
QP2010 Ultra. Isotope ratios were determined using a Thermo Finnigan Delta XL
mass
spectrometer and all analyses were performed in triplicate. A standard mixture of
n-alkanes with known dD composition (mix A4, provided by A. Schimmelmann,
Indiana University, USA) was run several times daily to calibrate the CO2 reference
gas used for conversion of dD values to VSMOW scale.

Chironomid analysis. Samples for chironomid analysis of the HÄ sequence were
taken every 2 cm. The aim was to obtain over 100 head capsules for each sample.
Studies have demonstrated that 50 head capsules are an adequate minimum to
establish species diversity in a sample and to provide reliable temperature
estimates36,37. In most samples, 1–2 g of sediment was sufficient to obtain
over 100 head capsules. The chironomid larval head capsules were prepared for
identification following the procedure in Brooks et al.38 The head capsules were
identified using a compound microscope at � 100 to � 400 magnification, with
reference to Cranston39, Wiederholm40, Rieradevall and Brooks41 and Brooks
et al.42 A modern Norwegian temperature calibration data set was used to derive
the chironomid–inferred temperatures (ref. 43, and unpublished). Root-mean-
squared-error of prediction (RMSEP) of the 2-component WA-PLS inference
model was 1.12 �C, the coefficient of determination (r2) was 0.92 and the maximum
bias was 0.77 �C.

Model description. We analysed the simulation of the Transient Climate of the
last 21 kyr (refs 33,44) (TraCE-21ka). To perform this experiment the National
Center for Atmospheric Research (NCAR) Community Climate System Model 3
(CCSM3) has been used. The atmospheric model is the Community Atmospheric
Model 3 with 3.75�� 3.75� horizontal resolution and 26 hybrid vertical levels. The
ocean model is the NCAR implementation of the Parallel Ocean Program with 25
vertical levels. The longitudinal resolution of the ocean model is 3.6� and the
latitudinal resolution is variable, with finer resolution near the equator (B0.9�).
The model is coupled to a dynamic global vegetation module. The model is forced
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by realistic insolation, atmospheric CO2, continental ice sheets and meltwater
discharge as described in details in Liu et al.33 (Supplementary Table 3). The model
is able to consistently replicate many major features of the deglacial surface
temperature evolution in agreement with reconstructions from various proxy
records over the globe. The model reproduces the Northern Hemisphere cooling
from the LGM into Heinrich 1 event, the abrupt warming into the Bølling–Allerød
warm periods, the cooling into the Younger Dryas, and hence the following
recovery to the warm climate into the Holocene33.
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