1	Pollen, biomarker and stable isotope evidence of late Quaternary
2	environmental change at Lake McKenzie, southeast Queensland
3	
4	Pia Atahan ^{a,b,} *, Henk Heijnis ^ª , John Dodson ^ª , Kliti Grice ^b , Pierre Le Métayer ^b , Kathryn Taffs ^c , Sarah
5	Hembrow ^c , Martijn Woltering ^b , Atun Zawadzki ^a
6	^a Institute for Environmental Research, Australian Nuclear Science and Technology Organisation,
7	Sydney, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
8	^b WA-Organic and Isotope Geochemistry Centre, Department of Chemistry, Curtin University, GPO
9	Box U1987, Perth, WA 6845, Australia
10	^c Southern Cross Geoscience and School of Environment, Science and Engineering, Southern Cross
11	University, PO Box 157, Lismore NSW 2480, Australia
12	
13	* Corresponding author: email address: pia.atahan@ansto.gov.au ; telephone: +61 2 9717 7261
14	
15	
16	Abstract
17	Unravelling links between climate change and vegetation response during the Quaternary is
18	important if the climate-environment interactions of modern systems are to be fully understood.
19	Using a sediment core from Lake McKenzie, Fraser Island, we reconstruct changes in the lake
20	ecosystem and surrounding vegetation over the last ca. 36.9 cal kyr. Evidence is drawn from multiple
21	sources, including pollen, micro-charcoal, biomarker and stable isotope (C and N) analyses, and is
22	used to gain a better understanding of the nature and timing of past ecological changes that have
23	occurred at the site. The glacial period of the record, from ca. 36.9-18.3 cal kyr BP, is characterised

24	by an increased abundance of plants of the aquatic and littoral zone, indicating lower lake water
25	levels. High abundance of biomarkers and microfossils of the colonial green alga Botryococcus occur
26	at this time and include large variation in individual botryococcene $\delta^{13}C$ values. A slowing or ceasing
27	of sediment accumulation occurs during the time period from ca. 18.3-14.0 cal kyr BP. By around
28	14.0 cal kyr BP fire activity in the area was reduced, as was abundance of littoral plants and
29	terrestrial herbs, suggesting wetter conditions from that time. The Lake McKenzie pollen record
30	conforms to existing records from Fraser Island by containing evidence of a period of reduced
31	effective precipitation commencing in the mid-Holocene.
32	
33	Key words
34	Quaternary, Botryococcus, pollen, palaeoecology, Fraser Island, southeast Queensland
25	
35	
35	
35 36	Introduction
	Introduction Lake sediment is an important source of information about late Quaternary climate and
36	
36 37	Lake sediment is an important source of information about late Quaternary climate and
36 37 38	Lake sediment is an important source of information about late Quaternary climate and environmental change in southeast Queensland, Australia. The region has produced long and high
36 37 38 39	Lake sediment is an important source of information about late Quaternary climate and environmental change in southeast Queensland, Australia. The region has produced long and high quality records focused on microfossils (pollen, diatoms and charcoal) and geochemistry, and these
36 37 38 39 40	Lake sediment is an important source of information about late Quaternary climate and environmental change in southeast Queensland, Australia. The region has produced long and high quality records focused on microfossils (pollen, diatoms and charcoal) and geochemistry, and these have been used to reconstruct past changes in vegetation, human activity and aeolian sedimentation
36 37 38 39 40 41	Lake sediment is an important source of information about late Quaternary climate and environmental change in southeast Queensland, Australia. The region has produced long and high quality records focused on microfossils (pollen, diatoms and charcoal) and geochemistry, and these have been used to reconstruct past changes in vegetation, human activity and aeolian sedimentation (Longmore 1997; Longmore and Heijnis 1999; Donders et al. 2006; McGowan et al. 2008; Barr et al.
36 37 38 39 40 41 42	Lake sediment is an important source of information about late Quaternary climate and environmental change in southeast Queensland, Australia. The region has produced long and high quality records focused on microfossils (pollen, diatoms and charcoal) and geochemistry, and these have been used to reconstruct past changes in vegetation, human activity and aeolian sedimentation (Longmore 1997; Longmore and Heijnis 1999; Donders et al. 2006; McGowan et al. 2008; Barr et al. 2013; Moss et al. 2013). Much of what is known about Quaternary environments in the subtropical
 36 37 38 39 40 41 42 43 	Lake sediment is an important source of information about late Quaternary climate and environmental change in southeast Queensland, Australia. The region has produced long and high quality records focused on microfossils (pollen, diatoms and charcoal) and geochemistry, and these have been used to reconstruct past changes in vegetation, human activity and aeolian sedimentation (Longmore 1997; Longmore and Heijnis 1999; Donders et al. 2006; McGowan et al. 2008; Barr et al. 2013; Moss et al. 2013). Much of what is known about Quaternary environments in the subtropical region of Australia has come from lake records on North Stradbroke Island and Fraser Island, and

to temperate regions it has a low density of sediment-based proxy records extending into the lastglacial.

49 This study focuses on reconstructing past environmental change at a lake site on Fraser Island, 50 using microfossil, biomarker and stable isotope analysis techniques. This study builds on previous 51 work at the site, using diatom and branched glycerol dialkyl glycerol tetraether (GDGT) distributions 52 (Hembrow and Taffs 2012; Hembrow et al. 2014; Woltering et al. 2014), and aims to broaden 53 understanding of past environmental conditions at the site. Some key benefits of including 54 biomarker and compound specific isotope techniques in studies of Quaternary-aged sediment have 55 for example been discussed by Bianchi and Canuel (2011), Eglinton and Eglinton (2008) and Sachs et 56 al. (2007) and importantly include the attainment of otherwise unavailable information about past 57 isotope reservoirs and presence of organisms not associated with hard fossil remains.

58

59 Site Description

60 Lake McKenzie is a clear water oligotrophic lake located in an elevated inland area of Fraser Island, 61 about 7 km from the western coastline (25°26'51" S, 153°03'12" E; Fig. 1). The lake has an area of 62 about 94 ha, an elevation of 85 m above sea level and lies amongst dunes that reach 150 m in elevation. The lake is positioned above the regional groundwater table, and its relatively 63 64 impermeable base-layer (a B-horizon) restricts downwards percolation of water (Timms 1986; 65 Longmore 1998). The lake has no inflow or outflow creeks and thus is highly responsive to changes in 66 precipitation and evaporation. Concentrations of total phosphorus are low (2-5 μ g L⁻¹), as is pH (4.8 – 67 5.8), and dominant types of phytoplankton are Sphaerocystis, Oocystis and Peridinium (Bowling 68 1988; Hadwen et al. 2003). Living Botryococcus has not been reported in this lake, although it is 69 reported in other perched lakes on Fraser Island (Bowling 1988). The lake lies within a national park 70 that has been largely protected from industrial and residential development.

71	The Fraser Island landmass is composed of Quaternary-aged sand dunes that were formed
72	progressively during periods of lower sea level (Lees 2006). The climate is subtropical. Rainfall
73	derives mostly from south-easterly trade winds and tropical cyclones from the north. Mean monthly
74	rainfall for January and July is respectively around 160 and 90 mm, and mean monthly temperatures
75	are between 20 and 32°C in January and 12 and 23°C in July (Australian Bureau of Meteorology
76	2013). Precipitation patterns on Fraser Island are strongly influenced by topography, rainfall is
77	substantially higher in elevated areas on dune slopes (Longmore 1998)
78	The sandy soils of Fraser Island support a diverse range of vegetation communities, including
79	heathlands, woodlands, tall eucalypt forest, and closed rainforest. Local water table depth, nutrient
80	availability, soil salinity and local burning regimes are important influences on the structure and
81	composition of vegetation communities on the island. Common vegetation communities are
82	Eucalyptus signata - Banksia wallum heathland; coastal woodland, sedgeland and swamp; tall
83	eucalypt forest with Syncarpia hillii and Lophostemon confertus; and tall closed forest with rainforest
84	and E. pilularis (Ryan 2012). Vegetation on slopes surrounding Lake McKenzie is composed of tall
85	forest with E. racemosa, E pilularis, E. microcorys, E. resinifera and Syncarpia hillii. Dominant plants
86	of the littoral zone are Baumea spp., Juncus spp. and Lepironia articulata (Ryan 2012).

87

88 Methods

89 Sampling and Dating

90 The methods by which the Lake McKenzie cores were sampled and dated has been previously 91 described by Hembrow et al. (2014) and Woltering et al. (2014). Two adjacent sediment cores were 92 extracted from the centre of the deepest basin of Lake McKenzie in 2010, in 8.3 m water depth. The 93 five centimetre diameter cores (LM1 and LM2) were extracted using a gravity corer, extruded on the 94 lake edge, and sliced into either 0.25 cm thick (LM1) or 1 cm thick (LM2) samples. Total un-extruded core length was measured at five to ten centimetre intervals during sampling to monitor any loss of
core recovery. Samples were placed in individual plastic zip-lock bags before being transported and
stored in laboratory freezers.

98 The cores were composed of uniformly dark organic-rich mud, with no visible alterations in 99 colour or texture. With the exception of one large wood fragment recovered from core LM1, 100 terrestrial plant macrofossils, such as leaves or seeds, were not encountered in the cores. For this 101 reason, and in order to target terrestrially-derived carbon, pollen residues were prepared for AMS 14 C dating. Preparation of pollen residues for AMS 14 C dating involved sieving to collect a 10-150 μ m 102 103 size fraction, separation by heavy liquid flotation (LST; SG = 1.8) and treatment with NaOH (10%), HCl 104 (10%) and H₂SO₄ (98%). Pre-treatment of the wood fragment involved acid-alkali-acid treatment and 105 all samples were graphitised according to standard procedure at the Australian Nuclear Science and 106 Technology Organisation (ANSTO) (Hua et al., 2001). Radiocarbon dates were calibrated using the 107 IntCal09 calibration curve (Reimer et al. 2009). Calibrated ages in the text are followed with a 'cal kyr 108 BP' post-fix, single calibrated dates mentioned in the text refer to the median age in the 2σ 109 calibrated age-range. Abundance of atmosphere-derived 210 Pb (210 Pb $_{unsupported}$) in the upper sediment was used to 110 111 estimate recent sediment accumulation rates at Lake McKenzie. The method, which has been

described in detail by Appleby and Oldfield (1978), Appleby and Oldfield (1992) and Appleby (2001),
uses down-core change in ²¹⁰Pb_{unsupported} activity to calculate an accumulation rate based on the ²¹⁰Pb
half-life of 22.26 ±0.22 years. ²¹⁰Pb_{unsupported} was estimated by subtracting activity of supported ²¹⁰Pb
(²¹⁰Pb_{supported}), which was measured indirectly from its grandparent radioisotope Radium-226 (²²⁶Ra),
from total ²¹⁰Pb (²¹⁰Pb_{total}) activity, which was measured indirectly from its progeny polonium-210
(²¹⁰Po). Both the CIC (constant initial concentration) and the CRS (constant rate of supply) models
(Appleby and Oldfield 1978; Appleby 2001) were applied and calendar ages estimated.

119	210 Pb _{supported} and 210 Pb _{total} were measured in the upper 8.5 cm of core LM1. Between 0.18 and 1.23
120	g of sediment was prepared by heating the samples in HNO_3 at 60°C. Once evaporated, small
121	amounts of H_2O_2 (10%) were added with heating until the reaction subsided. The samples were
122	evaporated again before refluxing in a mixture of HNO_3 and HCl (1:3; 50-60°C) for at least 4 hours.
123	Samples were subsequently redissolved in HCl (6M) and centrifuged to separate the supernatant
124	from the residue. The supernatant was collected and processed to remove excess iron by diethyl
125	ether solvent extraction. ²¹⁰ Po and ²⁰⁹ Po were isolated by auto-deposition onto silver discs using
126	$\rm NH_2OH.HCl.$ ²²⁶ Ra and ¹³³ Ba were isolated by co-precipitation and collected as colloidal micro-
127	precipitates on 0.1 μm Millipore VV membrane filters. The recovery of the preparation method was
128	assessed using radioactive tracers 133 Ba (~85 Bq) for 226 Ra recovery and 209 Po (~0.2 Bq) for 210 Po
129	recovery, which were added at the start of the sample processing procedure. The auto-plated
130	polonium on the silver discs and the radium micro-precipitates on membrane filters were analysed
131	using ORTEC alpha spectrometers to determine ²¹⁰ Po and ²²⁶ Ra activities. ¹³³ Ba was analysed using a
132	HPGE gamma spectrometer.

134 Microfossil analysis

135	Thirty-two samples from core LM2 were prepared for microfossil analysis. This preparation involved
136	sieving using a 125 μm mesh, treatment with HCl (10%), KOH (10%), HF (40%), acetolysis and
137	mounting in glycerol. A known quantity of Lycopodium marker grains was added to each sample to
138	allow for quantification of microfossils. Microfossils were counted under an Olympus BX50
139	microscope at 600x magnification and pollen was counted until 300 grains of terrestrial plant types
140	were observed. Pollen identification was assisted by online resources (Newcastle Pollen Collection
141	2002; Australasian Pollen and Spore Atlas 2013) and published literature (Pike 1956). Results are
142	presented as percentages of the total terrestrial pollen sum. Pollen zones were assigned on the basis

of a stratigraphically constrained cluster analysis (CONISS) (Grimm 1987) performed using Tilia
software (v. 1.7.16) (Grimm 1992).

Micro-charcoal particle and *Botryococcus* colony concentrations were estimated using the point
 count method (Clark 1982). Micro-charcoal particles were identified based on their black or

transparent grey colour and jagged outline and only particles with an axis longer than 10 μm were
counted.

149

- 150 Total organic carbon (TOC), total nitrogen (TN) and bulk organic δ^{13} C and δ^{15} N analysis
- 151 All samples from core LM2 were analysed on a Delta V Advantage Continuous Flow Isotope Ratio

152 Mass Spectrometer-Flash 2000 HT Elemental Analyser for C%, N%, δ^{13} C and δ^{15} N. Nitrogen

153 measurements were conducted on oven dried (40 °C), homogenised sediment. Carbon

154 measurements were conducted on the same aliquots after they had been treated with HCl (10%) to

155 remove any carbonate material present in the sample. The reference materials used were: CO₂ -

156 calibrated against IAEA CH6 with a consensus value of 10.449‰ Vienna Peedee Belemnite (VPDB)

157 (Coplen et al. 2006); N₂ - calibrated against IAEA N-1 with a consensus value of δ^{15} NAIR = +0.4‰

158 (Bohlke and Coplen, 1995); working soil standard AILS SSA (ANSTO Isotope Laboratory Standard -

159 Simulated Soil Aliquot); and acetanilide. The results are reported relative to VPDB for C and air for N.

160

161 Lipid analysis

- 162 Twelve samples from core LM2 were extracted using a Soxhlet apparatus and pre-extracted cellulose
- 163 thimbles. Extractions were performed on 3-5 g of dried and ground sediment for 24 hours, with a
- 164 solvent mixture of dichloromethane and methanol (9:1). Activated copper turnings were added to
- 165 the collection flask to remove elemental sulphur. Extracts were separated into two aliquots,

evaporated to dryness and weighed. Aliquots of each sample were initially prepared for GC-MS
analysis using the separation procedure described below. A modified separation procedure was then
performed on remaining aliquots of 6 samples, prior to analysis by isotope ratio monitoring (irm)GC-MS.

170 Aliquots of extracts were initially separated using a small column (50 mm x 5 mm) filled with 171 activated silica gel pre-eluted with n-Hexane. Extracts were progressively eluted with 2 ml of 172 *n*-Hexane (the saturated hydrocarbon fraction), 3:7 DCM: *n*-Hexane (the aromatic hydrocarbon 173 fraction) and 1:1 DCM: n-Hexane (the polar fraction). Known volumes of squalane (Fluka 85629) 174 were added to the saturated hydrocarbon fractions to allow for estimation of compound 175 concentrations. A modified separation procedure was performed on samples prior to irm-GC-MS 176 analysis in order to improve compound separation. Extracts were added to the top of a large column 177 (20 cm x 1 cm) filled with activated silica gel and eluted progressively with *n*-Pentane (2 bed-loads; 178 'F1' fraction); 3:7 DCM: n-Pentane (2 bed-loads; 'F2' fraction); and 1:1 DCM: n-Pentane (2 bed-loads; 179 'F3' fraction). Fractions 'F1' and 'F2' were combined and reseparating using a small column (50 mm x 180 5 mm) and eluted with *n*-Hexane (1 bed-load; 'F1a' fraction); *n*-Hexane (2 bed-loads; 'F1b' fraction); 181 n-Hexane (2 bed-loads; 'F1c' fraction); and 1:1 DCM: Methanol (2 bed-loads; 'F2' fraction). Aliphatic 182 and aromatic fractions were analysed by GC-MS. In some cases individual fractions were combined 183 prior to measurement by irm-GC-MS, in order to completely capture compounds that eluted across 184 fractions.

GC-MS analysis used a Hewlett Packard (HP) 5973 mass selective detector interfaced to HP 6890
gas chromatograph, fitted with a DB-5MS column (60 m x 0.25 μm i.d.; J and W Scientific). The GC
oven was programmed to increase from 40 °C to 300 °C at 3 °C min⁻¹ with an initial hold time of 1
minute and a final hold time of 30 min. Samples were dissolved in *n*-Hexane and injected on-column
using a HP 6890 auto-sampler. Helium was used as the carrier gas, at a linear velocity of 28 cm s⁻¹
and the injector operating at constant flow. Typically the MS was operating at an ionisation energy

of 70 *eV*, a source temperature of 180 °C, with an electron multiplier voltage of 1800 V and a mass
range of 50 to 550 amu.

193 Compound specific carbon isotope ratios were measured on an HP 6890 GC equipped with a 194 HP6890 autosampler and interfaced to an Isoprime Micromass isotope ratio monitoring mass 195 spectrometer. GC conditions were identical to those for GC-MS analysis described above. Each 196 sample was analysed at least twice and δ^{13} C values are reported relative to VPDB. Maximum 197 deviation between separate analyses was less than or equal to 0.5‰ for all but 7 of the biomarker 198 δ^{13} C values reported here. Standard mixes with compounds of known isotope values were run at 199 least between every two samples in order to monitor the stability of the system.

200

- 201 Results
- 202 Age model

203 The age model for Lake McKenzie has been previously described by Woltering et al. (2014) and was 204 based on a deposition model that was constructed using OxCal (version 4.1) (Bronk Ramsey 2008, 205 2009) (Fig. 2). The deposition model excluded three dates that appeared to be outlying (OZN680, 206 OZN681 and OZO411). Two of those dates (OZN680 and OZN681) were obtained at the same depth 207 on core LM1, and appear to mark a sedimentary disturbance which may be related to the presence 208 of the wood fragment. The third date relates to an age reversal of 1970 ¹⁴C years which occurs 209 between dates at 20-21 and 23-24 cm depths. In the absence of an obvious reason to exclude either 210 date from the deposition model, Oxcal overall Agreement Indexes and Oxcal Outlier Analyses were 211 compared to determine which had a higher likelihood of being erroneous. A low overall Agreement 212 Index was produced when OZN685 excluded in a P_Sequence deposition model (58.2%), compared 213 to that produced when OZO411 was excluded (65.3%), and Outlier Analyses indicated a higher 214 posterior probability of OZO411 being an outlier compared with OZN685. Thus OZO411 was deemed 215 to be a more likely outlier, and was excluded from the deposition model.

The sediment cores lacked visible lithological changes, however a large age difference of ca. 4.3 kyr was observed between contiguous samples obtained from 25-26 and 26-27 cm depths (OZN686 and OZ0412). Despite any visible indication of a break in sediment accumulation, the radiocarbon dates suggest a slowing or ceasing of sediment accumulation in the time interval of ca. 18.3-14.0 cal kyr BP.

221 Geochemical analyses

222 Marked changes in TOC%, TOC/TN and bulk organic matter δ^{13} C and δ^{15} N occur with depth (Fig. 3) and are characterised by a down-core increase in TOC/TN and decrease in δ^{15} N values. Nine 223 224 compounds were observed that have been identified as botryococcenes (Fig. 4; Supplementary Material). Their identification was based on comparisons with published mass spectra of 225 226 botryococcene compounds and Kováts indexes (Huang et al. 1999; Gao et al. 2007; de Mesmay et al. 227 2008). Botryococcenes from Lake McKenzie were also compared with a sample containing a 228 compound previously identified as 1, 6, 17, 21-octahydrobotryococcene by Huang et al. (1999). A 229 good match in elution time and mass spectra was found between this sample and the compound 230 described here as the A2 botryococcene. With the exception of the C0 botryococcene, all 231 botryococcenes display higher concentrations in the lower samples, below 26 cm depth (Fig. 3). The 232 **CO** botryococcene however, shows a distinct down-core trend: concentrations of this compound 233 peak at 17 cm and are low below 26 cm. Botryococcene compounds were observed to have δ^{13} C 234 values in the range of -31.7% to -22.5% (Table 3). 235 Long chain *n*-alkanes observed in the Lake McKenzie samples had a strong odd-over-even 236 predominance (Fig. 4) and had average chain lengths (C25-C33) between 27.6 and 29.1. Chain length was observed to increase with depth. δ^{13} C values of odd C23-C33 *n*-alkanes ranged 237 from -38.6‰ to -30.3‰ (Table 3). A C_{20} HBI was also observed in the samples and showed higher 238

239 concentrations in the upper samples and had a maximum concentration at 10 cm depth (Fig. 3).

240

241	Microfossil analyses
-----	----------------------

- 242 The pollen diagram for Lake McKenzie is presented in Figure 5. A depth constrained cluster analysis
- 243 (CONISS) was performed using all pollen types in order to identify pollen zones (Grimm 1987);
- 244 characteristics of each pollen zone are described below.

245

- 246 Pollen zone LM2-1: 46-34 cm depth, ca. 36.9-26.9 cal kyr BP
- Pollen zone LM2-1 is characterised by high proportions of terrestrial herb pollen (mean = 15.3%), of
- 248 which Poaceae pollen is of highest abundance (11.1%), and is followed by Amperea (1.6%) and
- 249 Asteraceae (Tubuliflorae) (1.3%). Percentages of aquatic/littoral pollen are moderately high through
- 250 most of this zone (9.6%), and are dominated by Cyperaceae and Restionaceae. Casuarinaceae pollen
- 251 dominates the arboreal taxa (42.5%) and of the Myrtaceae pollen identified to genus level,
- 252 Eucalyptus and Melaleuca dominate. Moderate concentrations of micro-charcoal occur (195.9 cm²
- 253 g⁻¹). Concentrations of *Botryococcus* colonies are high (323.6 cm² g⁻¹) compared to the overlying
- 254 zones.

- 256 Pollen zone LM2-2: 34-26 cm depth, ca. 26.9-18.3 cal kyr BP
- 257 Pollen zone LM2-2 is characterised by high percentages of pollen from aquatic/littoral plants (17.3%)
- and relatively high percentages of terrestrial herb pollen (14.5%). Highest percentages of Typha
- 259 pollen occur in this zone (5.3%) and a sharp peak in *Typha* occurs at 33 cm depth. Cyperaceae also
- 260 occurs in high abundance (8.5%). A gradual replacement of Casuarinaceae with Myrtaceae pollen
- 261 occurs up-core through this zone. Terrestrial herb pollen is dominated by Poaceae (9.9%) and to a
- 262 lesser degree Asteraceae (Tubuliflorae) (1.6%), Chenopodiaceae (1.3%) and Amperea (0.8%).

263 Concentrations of micro-charcoal are high in this zone (519.9 cm² g⁻¹), peaking at 27 cm depth.

- 264 *Botryococcus* colonies remain abundant (291.9 cm² g⁻¹).
- 265

266 Hiatus: 26-25 cm depth, ca. 18.3-14.0 cal kyr BP

267 An age difference of ca. 4.3 kyr is observed between contiguous samples taken from 25-26 and 26-

268 27 cm depth. Although no lithological change occurs at this depth, the AMS ¹⁴C dates suggest a

hiatus is present spanning the time period from ca. 18.3-14.0 cal kyr BP.

- 270
- 271 Pollen zone LM2-3: 25-18 cm depth, ca. 14.0-6.1 cal kyr BP
- 272 A large change in the microfossil assemblage marks the lower boundary of this pollen zone. At the

273 commencement of this zone, pollen of aquatic/littoral taxa are markedly reduced compared with the

274 underlying zone (3.1%), as is Poaceae pollen (2.1%) and concentrations of both micro-charcoal (90.7

- 275 cm² g⁻¹) and *Botryococcus* colonies (39.2 cm² g⁻¹). Casuarinaceae pollen dominates the arboreal
- 276 pollen (45.7%), and of the myrtaceous pollen types, *Lophostemon* and *Callistemon* are increased

277 compared with the underlying zone (respectively 2.3% and 4.7%), while Acmena is decreased (0.2%).

278 Percentages of Monotoca are higher (7.8%), while percentages of Asteraceae (Tubuliflorae) and

279 Chenopodiaceae pollen are lower (respectively 0.2% and 0.4%) than the underlying zone.

280

281 Pollen zone LM2-4: 18-10 cm depth, ca. 6.1-2.5 cal kyr BP

Pollen zone LM2-4 is characterised by having the highest percentages of Myrtaceous pollen (59.6%).
Percentages of Moraceae (0.5%) and *Dodonaea* (1.2%) are slightly increased compared with the
underlying zones. Percentages of Casuarinaceae pollen are low (19.2%) while Myrtaceae pollen is
high (59.1%). Pollen from aquatic/littoral taxa is slightly more abundant in this zone (3.7%) and two

286 peaks in their abundance occur at 15 and 10 cm depth. Micro-charcoal and *Botryococcus*

287 concentrations also show slight increases around 15 and 10 cm depth, but on the whole are low in

288 this zone. Percentages of Poaceae pollen are increased slightly (2.9%), compared with the underlying

289 zone.

290

291 Pollen zone LM2-5: 10-0 cm depth, ca. 2.5-0 cal kyr BP

292The uppermost pollen zone is characterised by reduced percentages of aquatic/littoral pollen (1.8%)293and high percentages of *Monotoca* (12.6%). Casuarinaceae pollen is more abundant compared with294the underlying zone (29.0%), as is *Dodonaea* (2.8%) and *Eucalyptus* (15.3%). Concentrations of295micro-charcoal and *Botryococcus* colonies are slightly increased compared with the underlying zone296(respectively 92.1 and 59.0 cm² g⁻¹), and show a small increase around 4 cm depth. Pollen from *Pinus*297increases markedly at 4 cm depth.

298

299 Discussion

300 Chronological assessment of the Lake McKenzie record

301 Obtaining reliable radiocarbon age estimates on organic remains from lake sediments can be 302 problematic, as lake sediments are susceptible to producing dates that appear greater than the date 303 of sediment deposition. Processes leading to erroneously old radiocarbon ages commonly arise 304 when organic matter that is depleted in ¹⁴C in relation to the contemporaneous atmosphere is 305 incorporated into the sediments via dissolved forms of carbon, or via organic remains transported to 306 the lake after a period of storage in the catchment (Bjorck and Wohlfarth 2001; Walker et al. 2007). 307 Terrestrial plant remains are preferentially selected for radiocarbon dating as those remains are 308 unaffected by lake water reservoir effects, and when those remains are relatively fragile they are

309 unlikely to withstand sediment reworking and long term storage processes in the catchment. They thus have a ¹⁴C composition that is consistent with the atmosphere contemporaneous to sediment 310 311 deposition (Bjorck and Wohlfarth 2001; Walker et al. 2007). A lack of suitable terrestrial macrofossils 312 in the Lake McKenzie cores led to pollen residues being targeted for radiocarbon dating. Pollen is an 313 advantageous material as it is primarily of terrestrial origin, it often has a short transport time from 314 site of production, and is commonly abundant in lake sediments (Vandergoes and Prior 2003). 315 However, prepared pollen fractions typically contain some organic detritus of unknown sources, and 316 this potentially influences radiocarbon age estimates (Bjorck and Wohlfarth 2001). And as pollen 317 exines are robust, pollen can be stored for lengthy periods of time on catchment slopes prior to 318 being deposited in lake sediments and thus potentially incorporate a time lag into radiocarbon age 319 estimates. At Lake McKenzie, the proportion of pollen transported to the lake via surface runoff is 320 minimised by the lack of inflowing water channels. Additionally, the lake catchment has been 321 predominantly vegetated with forest or woodland, and thus major events of sediment input would 322 be largely restricted to periods following vegetation disturbance, after severe fire or storm, for 323 example. Therefore time lags associated with sediment storage prior to deposition are unlikely to be 324 a major influence on age estimates at Lake McKenzie. 325 The exact reason for the observed slow rate of sediment accumulation at Lake McKenzie is 326 difficult to determine. Physical and chemical characteristics of Lake McKenzie are distinctly different 327 to Lake Allom and Hidden Lake, where faster rates of sediment accumulation have been reported 328 (Longmore 1998; Donders et al. 2006). Comparable rates of sediment accumulation are reported at 329 Old Lake Coomboo Depression (Longmore and Heijnis 1999) and both Lake McKenzie and Old Lake 330 Coomboo Depression are similar in the sense that they have relatively flat lake bed topographies, as 331 opposed to Hidden Lake which has steeper slopes. While Lake McKenzie, Lake Allom and Hidden 332 Lake are all oligotrophic and acidic (pH 4.0-5.8), Lake McKenzie has markedly clearer water, and lower Total Phosphorus ($\leq 5 \mu g l^{-1}$), Total Nitrogen ($\leq 70 \mu g l^{-1}$) and Chlorophyll-a ($\leq 0.2 \mu g l^{-1}$) content 333 334 (Bowling 1988; Longmore 1998; Hadwen et al. 2003). These parameters may be related to a low rate

of lake productivity or high rate of sediment diagenesis, and thus a slower sediment accumulation
rate at Lake McKenzie. Bioturbation does not appear to have played a major role at the Lake
McKenzie coring site over the last 130 years as a clear monotonic decrease in ²¹⁰Pb_{unsupported} is
observed in the upper part of the record. High water content, and low bulk density (Hembrow et al.
2013) in the upper layers of the sediment may account in part for the observed increase in sediment
accumulation rate above 7 cm depth.

341

342 Environmental conditions at Lake McKenzie from ca. 36.9-18.3 cal kyr BP

343	The combined evidence presented here indicates that during the glacial period Lake McKenzie was
344	shallow or ephemeral, and had an expanded littoral zone compared to present. Plants of the littoral
345	or shallow water zone were abundant between ca. 36.9 and 18.3 cal kyr BP, as indicated by the high
346	proportions of Cyperaceae and Restionaceae pollen in the record. Poaceae abundance is high at this
347	time, which reflects either expanded grassy openings in surrounding vegetation, or an expanded
348	littoral zone. The presence of long-chain <i>n</i> -alkanes with an odd-over-even predominance and δ^{13} C
349	values within the range of -35.7 to -31.5‰ indicates a major source from terrestrial C3 plants
350	(Eglinton and Hamilton 1967; Rieley et al. 1991). As do the δ^{13} C values of bulk organic matter which
351	range from -28.5 to -27.7 ‰ (Smith and Epstein 1971; Tieszen 1991). High TOC/TN values suggest
352	emergent and terrestrial plants are a dominant source of organic matter to the lake sediment
353	(Bianchi and Canuel 2011), however caution in the interpretation of TOC/TN ratios is required at
354	Lake McKenzie as Botryococcus braunii is known to produce bulk organic matter with high values.
355	TOC/TN ratios greater than 20 have previously been observed for the algal colonies (Grice et al.
356	1998, 2001; Huang et al. 1999).

The green colonial alga *Botryococcus braunii* is the likely source of the botryococcene compounds observed in the Lake McKenzie sediments (Maxwell et al. 1968; Metzger et al. 1991). Down-core

359	changes in abundance of botryococcenes and microfossils of Botryococcus show similar variation
360	(Fig. 3 and 5), with highest abundance of both proxies occurring in two separate periods, at around
361	36.0-30.8 cal kyr BP and 23.5-20.3 cal kyr BP. The reason for the high abundance of Botryococcus
362	during the glacial period is not known, but could be linked to factors such as the nutrient status of
363	the lake water, or the presence of other phytoplankton with faster growth rates at the site. These
364	factors influence the modern distribution of the algae (Cook et al. 2011). The lower atmospheric CO_2
365	partial pressure of the glacial period would presumably have been favourable to this green alga, as it
366	has a CO_2 concentrating mechanism (Street-Perrott et al. 1997; Huang et al. 1999). The modern
367	distribution of <i>Botryococcus</i> is broad and the alga appears to have a wide ranging environmental
368	tolerance, however the alga is most commonly observed in freshwater oligotrophic lakes and ponds
369	(Cook et al. 2011) and its presence has previously been used to understand past changes in
370	eutrophication resulting from human activity (Smittenberg et al. 2005).
371	Botryococcene δ^{13} C values for the glacial period of the record range from -31.7‰ to -22.5‰ and
372	this is within the range of botryococcenes observed in Quaternary lake sediments at other sites (e.g.
373	Grice et al. 1998; Huang et al. 1999; Smittenberg et al. 2005; Gao et al. 2007; Grossi et al. 2012). This
374	large range in $\delta^{\rm 13}C$ values is seen in a single sample from 27 cm depth (Table 3). Wide and
375	contemporaneous variation in $\delta^{\rm 13}\text{C}$ values of botryococcenes has previously been observed, and
376	suggested to derive from their synthesis during successional periods of an algal bloom, when lake
377	water characteristics such as dissolved nutrients, pH and dissolved CO_2 were undergoing alteration
378	(Huang et al. 1999). This is a potential cause for the wide range in δ^{13} C values observed within the
379	one centimetre thick samples from the Lake McKenzie core.
380	Although the number of $\delta^{13}\mbox{C}$ values obtained on individual botryococcene compounds from Lake

381 McKenzie is small, a δ^{13} C maximum occurs in zone LM2-2 (ca. 26.9 - 18.3 cal kyr BP) (Table 3), and 382 this ¹³C enrichment is also observed in the C29, C31 and C33 *n*-alkanes from this zone. The timing of 383 this apparent carbon isotope excursion corresponds with the terminal period of the last glacial and a similarly timed positive shift in botryococcene δ^{13} C values has previously been observed in a lake record from Mt Kenya (Huang et al. 1999). While the magnitude of the shift is greater in the Mt Kenya record, the proposed cause for the isotopic shift at that site, from the depletion of CO₂(aq) under the lower atmospheric *p*CO₂ of the LGM, may also explain the observed shift to more positive botryococcene δ^{13} C values at Lake McKenzie.

Cooler conditions at Lake McKenzie during the glacial are suggested by the slightly higher abundance of Asteraceae (Tubuliflorae). Previous work on GDGT distributions at Lake McKenzie, using a global soil calibration, estimated mean annual air temperature to have been 4.1 °C cooler at the site around 18.8 cal. kyr BP compared to present (Woltering et al. 2014).

393 Micro-charcoal particles are abundant during the glacial period of the record and reflect a higher 394 frequency and/or intensity of burning, probably as a result of dryer conditions. The influence of humans on fire activity at Lake McKenzie during the glacial period is difficult to discern however. The 395 396 record does not extend far enough into the past to capture the initial occupation of the Australian 397 continent, and the record does not contain information about short-term alterations in fire activity, 398 as the time resolution for each sample is low. The presence of humans in SEQ during the glacial 399 period is confirmed by the occupation of Wallen Wallen Creek site on North Stradbroke Island 400 around 21,800 ¹⁴C yr BP (Neal and Stock 1986; Ulm 2011). However, very little is known about pre-401 Holocene human occupation of this area, as an extremely low number of archaeological sites have 402 been discovered (Bowdler 2010). In a continent that was dryer, windier and cooler than present 403 (Harrison and Dodson 1993; Hesse et al. 2004; Williams et al. 2009), resources available on Fraser 404 Island - from perched lakes, swamps and rainforest refugia for example - would seemingly have 405 been attractive to people. However further archaeological work is required to understand the extent 406 of human-induced fire activity on Fraser Island and on the nearby mainland.

408 Deglaciation

409 The observed ceasing or slowing of sediment accumulation at Lake McKenzie during deglaciation (ca. 410 18.3-14.0 cal kyr BP) is likely to have been caused by the lake becoming perennially or intermittently 411 dry. Perched lake sediments are prone to hiatuses, due to their sensitivity to change in precipitation 412 and evaporation (Verschuren 2003). A hiatus is reported in the Lake Allom record, persisting to 413 around 12.0 cal kyr BP (Donders et al. 2006), and while detection of hiatuses in the Old Lake 414 Coomboo Depression (OLCD) record is restricted by the low frequency of radiocarbon dates, a sandy 415 layer bounded by radiocarbon dates of ca. 26.0 and 14.5 cal kyr BP has been suggested to indicate 416 dry conditions (Longmore and Heijnis 1999). Although the presence of hiatuses limits the amount of 417 information that can be gained, all three of the lake sediment records that extend into the glacial 418 that are now available from Fraser Island contain evidence of dry conditions occurring between the 419 time period of ca. 18.3-14.5 cal kyr BP.

420 The timing of dry periods observed in Fraser Island records during deglaciation does not conform 421 to climate shifts observed on North Stradbroke Island. There, vegetation reconstructions show arid 422 periods occurring later than those on Fraser Island. The Native Companion Lagoon record shows 423 evidence of dryer conditions at ca. 13.7 and 10.5 cal kyr BP; at Welsby Lagoon drying appears at ca. 424 14.0-12.0 cal. yr BP and 11.5 cal. kyr BP; and at Tortoise Lagoon drying appears at 14.0-12.0, 11.8 425 and 11.0 cal kyr BP (Moss et al. 2013). Higher resolution work in both regions, but particularly on or 426 near Fraser Island, is required to more precisely understand the timing and synchroneity of 427 deglaciation climate changes in southeast Queensland. However, as the islands are separated by 428 more than 1.5 ° of latitude, a time lag in climate shifts occurring in the two areas is feasible given 429 current understanding about changes that were occurring in offshore marine currents at that time. 430 According to evidence from marine cores, the zone of separation of the East Australian Current 431 (EAC) from the Australian continent gradually migrated southwards after the last glacial maximum, 432 passing Fraser Island and then North Stradbroke Island (Bostock et al. 2006). This current is part of a

major circulation system transporting warm tropical waters southwards, and has the effect of
warming ocean water east of Fraser and North Stradbroke Islands. Thus deglaciation change in the
position of this current might have had a non-synchronous influence on precipitation regimes in
southeast Queensland. However other factors, such as differences in the islands' topography or the
effects of sea level rise, may also have affected local moisture regimes of the two regions.

438

439 Environmental conditions at Lake McKenzie since ca. 14.0 cal kyr BP

440 Deeper water conditions at the sampling site from around 14.0 cal kyr BP are suggested by the 441 reduction in abundance of plants of the littoral and shallow water zones, and the reduced 442 contribution of terrestrial or emergent plant organic matter in the lake sediments. Wetter conditions are also suggested by the denser vegetation at the site, indicated by the reduced abundance of 443 Poaceae and Asteraceae, and reduced fire activity. Monotoca and Lophostemon are more abundant 444 during the Holocene and may track the establishment of modern types of eucalypt forest at the site. 445 446 Those taxa are abundant in the eucalypt forests that currently occur on the high dunes and sand plains of Fraser Island, including those surrounding Lake McKenzie (Ryan 2012). 447 448 Superimposed on the underlying trend of higher effective precipitation during the Holocene is 449 evidence of a subtle reduction in moisture at the site, commencing around ca. 6.1 cal kyr BP and 450 persisting to around 2.5 cal kyr BP, suggested by the small increase in littoral plants. This evidence 451 for dryer conditions commencing around the mid-Holocene is consistent with previous findings from 452 diatom remains at the site (Hembrow et al. 2013). However unlike the pollen record presented here, 453 the diatom record showed shallower water conditions persisting to present. Other lake records on 454 Fraser Island show evidence of dry conditions during the mid-Holocene. At Hidden Lake, a dry period 455 is reported from ca. 9.5-2.6 cal kyr BP, and is further described as progressing from a period of falling 456 groundwater levels from ca. 9.5-6.3 cal kyr BP, to stable and low groundwater levels from ca. 6.3-5.1

457 cal kyr BP, and to rising groundwater levels from ca. 5.1-2.6 cal kyr BP (dates are recalibrated using 458 the original ¹⁴C dates reported by Longmore (1998)). At Lake Allom, dry conditions are the proposed 459 cause for a sedimentary hiatus spanning from ca. 6.5-5.4 cal kyr BP (Donders et al. 2006), afterwhich 460 a period of moist conditions and rising lake levels is reported, persisting to ca. 3.0 cal kyr BP. Large-461 scale synthesis studies of palaeoclimate records conclude conditions across eastern Australia to have 462 been more variable or dryer from around 6-5 cal kyr BP, and suggest this to have been due to an 463 increasing intensity of the El Niño Southern Oscillation (ENSO) (Donders et al. 2007; Petherick et al. 464 2013; Reeves et al. 2013). As the area of influence of ENSO is wide, its influence on climates of 465 eastern Australia is expected to have been synchronous (Donders et al. 2007). The return to wetter 466 conditions in the late Holocene at some Fraser Island sites contrasts with the general trend for 467 eastern Australia, and suggests that local factors may have been an important influence on the 468 island's hydrological regimes during the late Holocene. 469 Unlike other botryococcenes detected in the Lake McKenzie record, the CO botryococcene has a 470 maximum concentration at ca. 5.5 cal kyr BP (Fig. 3). This unique down-core trend of the CO 471 botryococcene could be explained by: 1) more than one race of *B. braunii* occurring in the lake over 472 time; or 2) the same organism synthesising different compounds at different times during the lake's 473 history. Further work on the alga and its biomarkers is required to determine whether 474 environmental factors were driving the observed down-core changes in botryococcene distributions 475 at Lake McKenzie.

Despite the apparent increase in human occupation of southeast Queensland during the mid-Holocene (Ulm and Hall 1996; Ulm 2011), evidence of human activity in the form of large shifts in fire activity or vegetation composition are absent in the Lake McKenzie record. This contrasts with lake records from parts of North Stradbroke Island where increased burning is detected from the mid- to late-Holocene and is linked with intensified human activity (Moss et al. 2013). Despite the absence of human impact evidence in Fraser Island sediment records, archaeological investigations find occupation of the mainland adjacent to Fraser Island to date to at least ca. 5.5 cal kyr BP
(McNiven 1992) and occupation of Fraser Island itself to date to ca. 3 cal kyr BP (Ulm 2011). This
mismatch highlights the need for further palaeoecological and archaeological work to better
understand past human activity in the region.

486

487 Conclusions

488	The Lake McKenzie record provides a reconstruction of changes to ecosystem composition occurring
489	over the last ca. 36.9 cal kyr, inferred from sedimentary micro-fossils, biomarkers and stable isotope
490	ratios (C and N). Elevated abundance of littoral plants at the site and increased contribution of
491	allochthonous organic matter to the lake sediment, along with increased abundance of terrestrial
492	herbs, is interpreted as reflecting sustained dry conditions to at least ca. 18.3 cal kyr BP. The
493	underlying trend for increasing effective precipitation after ca. 14.0 cal kyr BP is interrupted ca. 6.1
494	cal kyr BP, when a subtle shift towards dryer conditions is detected in the pollen record. This
495	conforms to other evidence of mid-Holocene aridity on the island, and in the broader eastern
496	Australian region. Abundance of both fossil Botryococcus colonies and Botryococcus-derived
497	biomarkers indicate that maximum growth of this colonial green alga occurred during the glacial
498	period, when conditions were drier and cooler, and surrounding vegetation was sparser and more
499	prone to burning. The evidence presented here for the Lake McKenzie sediment record contributes
500	to the understanding of spatial and temporal variability of ecological changes occurring on Fraser
501	Island and in subtropical eastern Australia, and permits a better assessment of the significance of
502	those ecological shifts in a regional context.

503

504 Acknowledgements

505	Janelle Stevenson is thanked for preparing the pollen residues. Linda Barry and Kerry Wilsher are	
506	thanked for assistance associated with sampling. Jack Goralewski and Daniela Fierro are thanked for	
507	undertaking ²¹⁰ Pb dating, and Fiona Bertuch and Alan Williams are thanked for assisting with AMS	
508	¹⁴ C dating. Stephen Clayton and Geoff Chidlow are thanked for technical assistance associated with	
509	GCMS and GC-IRMS measurements. Rene Diocares is thanked for assistance with EA-IRMS	
510	measurements. We thank Lorenz Schwark for helpful discussions about the research project and	
511	Yongsong Huang for generously providing a sample for compound comparison.	
512	Pierre Le Métayer and Kliti Grice were supported by an ARC Discovery grant awarded to Kliti Grice.	
513	The Australian Nuclear Science and Technology Organisation (ANSTO) and The Institute for	
514	Geoscience Research at Curtin University provided funding for this project.	
515	•	

Formatted: Line spacing: Double

516 References

- Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of
 unsupported ²¹⁰Pb to the sediment. Catena 5: 1-8
- Appleby PG, Oldfield F (1992) Application of ²¹⁰Pb to sediment studies. In: Ivonavich M, Harmon RS
 (eds) Uranium-series disequilibrium: applications to earth, marine and environmental science.
 Oxford University Press, Oxford, pp 731-778
- Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds)
 Tracking environmental change using lake sediments, Volume 1: Basin analysis, coring and
 chronological techniques. Kluwer Academic Publishers, Dordrecht, pp 171-203
- Australasian Pollen and Spore Atlas (2013) Australasian Pollen and Spore Atlas. Canberra, ACT,
 Australia. http://apsa.anu.edu.au/
- 527 Australian Bureau of Meteorology (2013) Australian Government. http://www.bom.gov.au/
- Barr C, Tibby J, Marshall JC, McGregor GB, Moss PT, Halverson GP, Fluin J (2013) Combining
 monitoring, models and palaeolimnology to assess ecosystem response to environmental
 change at monthly to millennial timescales: the stability of Blue Lake, North Stradbroke Island,
 Australia. Freshwater Biol 58: 1614-1630
- Bianchi TS, Canuel EA (2011) Chemical biomarkers in aquatic ecosystems. Princeton University Press,
 Princeton, New Jersey
- Bjorck S, Wohlfarth B (2001) ¹⁴C chronostratigraphic techniques in paleolimnology. In: Last WM,
 Smol JP (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis,
 coring and chronological techniques. Kluwer Academic Publishers, Dordrecht, pp 205-245
- Bohlke JK, Coplen TB (1995) Interlaboratory comparison of reference materials for nitrogen isotope
 ratio measurements, taken from an IAEA technical report, References and intercomparison
 materials for stable isotopes of light elements. IAEA-TECHDOC-825, September 1995
- Bostock HC, Opdyke BN, Gagan MK, Kiss AE, Fifield LK (2006) Glacial/interglacial changes in the East
 Australian current. Clim Dynam 26, 645-659
- 542 Bowdler S (2010) The empty coast: conditions for human occupation in southeast Australia during
 543 the late Pleistocene. In: Haberle S, Stevenson J, Prebble M (eds) Altered ecologies: fire climate
 544 and human influence. Terra Australis 32. ANU EPress, Canberra, pp 178-186
- Bowling LC (1988) Optical properties, nutrients and phytoplankton of freshwater coastal dune lakes
 in south-east Queensland. Aust J Freshw Res 39: 805-815
- 547 Bronk Ramsey C (2008) Deposition models for chronological records. Quat Sci Rev 27: 42-60
- 548 Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51: 337-360
- 549 Clark RL (1982) Point count estimation of charcoal in pollen preparations and thin sections of
 550 sediment. Pollen et Spores 24: 523-535

	P=-1
553 554 555	Coplen TB, Brand WA, Gehre,M, Gröning M, Meijer HAJ, Toman B, Verkouteren RM (2006) After two decades a second anchor for the VPDB δ ¹³ C scale. Rapid Commun Mass Spectrom 20: 3165-3166
556 557 558	de Mesmay R, Metzger P, Grossi V, Derenne S (2008) Mono- and dicyclic unsaturated triterpenoid hydrocarbons in sediments from Lake Masoko (Tanzania) widely extend the botryococcene family. Org Geochem 39: 879-893
559 560 561	Donders TH, Wagner F, Visscher H (2006) Late Pleistocene and Holocene subtropical vegetation dynamics recorded in perched lake deposits on Fraser Island, Queensland, Australia. Palaeogeogr, Palaeoclim, Palaeoecol 241: 417-439
562 563 564	Donders TH, Haberle SG, Hope G, Wagner F, Visscher H (2007) Pollen evidence for the transition of the Eastern Australian climate system from the post-glacial to the present-day ENSO mode. Quat Sci Rev 26: 1621-1637
565	Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156: 1322-1335
566	Eglinton TI, Eglinton G (2008) Molecular proxies for paleoclimatology. Earth Planet Sci Lett 275: 1-16
567 568	Gao M, Simoneit BRT, Gantar M, Jaffé R (2007) Occurrence and distribution of novel botryococcene hydrocarbons in freshwater wetlands of the Florida Everglades. Chemosphere 70: 224-236
569 570 571	Grice K, Schouten S, Nissenbaum A, Charrach J, Sinninghe Damsté JS (1998) A remarkable paradox: sulfurised freshwater algal (<i>Botryococcus braunii</i>) lipids in an ancient hypersaline euxinic ecosystem. Org Geochem 28: 195-216
572 573 574	Grice K, Audino M, Boreham CJ, Alexander R, Kagi RI (2001) Distribution and stable carbon isotopic compositions of biomarkers in torbanites from different palaeogeographical locations. Org Geochem 32: 1195-1210
575 576	Grimm EC (1987) Coniss: a fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput and Geosci 13: 13-35
577 578	Grimm EC (1992) Tilia and Tilia-graph: pollen spreadsheet and graphics programs. Program and Abstracts, 8th International Palynological Congress, Aix-en-Provence [France]
579 580 581 582	Grossi V, de Mesmay R, Bardoux G, Metzger P, Williamson D, Derenne S (2012) Contrasting variations in the structure and stable carbon isotopic composition of botryococcenes through the last glacial-interglacial transition in Lake Masoko (southern Tanzania). Org Geochem 43: 150-155
583 584	Hadwen WL, Arthington AH, Mosisch TD (2003) The impact of tourism on dune lakes on Fraser Island, Australia. Lakes Reserv: Res and Manag 8: 15-26
585 586 587	Harrison S, Dodson JR (1993) Climates of Australia and New Guinea since 18,000 yrs BP. In: Wright Jr HE, Kutzbach JE, Webb III T, Ruddiman WF, Street-Perrott FA, Bartlein PJ (eds) Global climates since the last glacial maximum. University of Minnesota Press, Minnesota, pp 265-293

Cook EJ, Van Geel B, Van der Kaars S, van Arkel J (2011) A review of the use of non-pollen

palynomorphs in palaeoecology with examples from Australia. Palynology 35: 155-178

551

588 589	Hembrow S, Taffs KH (2012) Water quality changes in Lake McKenzie, Fraser Island, Australia: a Palaeolimnological approach. Aust Geogr 43: 291-302	
590 591 592	Hembrow S, Taffs K, Atahan P, Parr J, Zawadzki A, Heijnis H (2014) Diatom community response to climate variability over the past 37,000 years in the sub-tropics of the Southern Hemisphere. Sci Total Environ 468-469: 774-784	
593 594	Hesse PP, Magee JW, van der Kaars S (2004) Late Quaternary climates of the Australian arid zone: a review. Quat Int 118-119: 87-102	
595 596	Hua Q, Jacobsen GE, Zoppi U, Lawson EM, Williams AA, Smith AM, McGann MJ (2001) Progress in radiocarbon target preparation at the Antares AMS centre. Radiocarbon 43: 275-282.	
597 598 599	Huang Y, Street-Perrott FA, Perrott RA, Metzger P, Eglinton G (1999) Glacial-interglacial environmental changes inferred from molecular and compound-specific δ^{13} C analyses of sediments from Sacred Lake, Mt. Kenya. Geochim Cosmochim Acta 63: 1383-1404	
600 601	Lees B (2006) Timing and formation of coastal dunes in northern and eastern Australia. J Coast Res 22: 78-89	
602 603	Longmore ME (1997) Quaternary Palynological Records from Perched Lake Sediments, Fraser Island, Queensland, Australia: Rainforest, Forest History and Climatic Control. Aust J Bot 45: 507-526	
604 605 606	Longmore ME (1998) The middle Holocene 'dry' anomaly on the mid-eastern coast of Australia: calibration of paleowater depth as a surrogate for effective precipitation using sedimentary loss on ignition in the perched lake sediments of Fraser Island. Palaeoclimates 3: 135-160	
607 608 609	Longmore ME, Heijnis H (1999) Aridity in Australia: Pleistocene records of Palaeohydrological and Palaeoecological change from the perched lake sediments of Fraser Island, Queensland, Australia. Quat Int 57-58: 35-47	
610 611	Maxwell JR, Douglas AG, Eglinton G, McCormick A (1968) The botryococcenes – hydrocarbons of nove structure from the alga <i>Botryococcus braunii</i> Kützing. Phytochemistry 7: 2157-2171	
612 613 614	McGowan HA, Petherick LM, Kamber BS (2008) Aeolian sedimentation and climate variability during the late Quaternary in southeast Queensland, Australia. Palaeogeogr, Palaeoclim, Palaeoecol 265: 171-181	
615 616 617	McNiven I (1992) Sandblow sites in the Great Sandy Region, coastal southeast Queensland: implications for models of late Holocene rainforest exploitation and settlement restructuring. Qld Archaeol Res 9: 1-16	
618 619 620	Metzger P, Largeau C, Casadevall E (1991) Lipids and mcaromolecular lipids of the hydrocarbon-rich microalga <i>Botryococcus braunii</i> . Progress in the chemistry of organic natural products 57: 1-70	
621 622	Moss PT, Tibby J, Petherick L, McGowan H, Barr C (2013) Late Quaternary vegetation history of North Stradbroke Island, Queensland, eastern Australia. Quat Sci Rev 74: 257-272	
623 624	Neal R, Stock E (1986) Pleistocene ocupation in the south-east Queensland coastal region. Nature 323: 618-621	

625	Newcastle Pollen Collection (2002) Newcastle Pollen Collection, Newcastle, NSW, Australia.
626	http://www.geo.arizona.edu/palynology/nsw/index.html
627	Petherick L, Bostock H, Cohen TJ, Fitzsimmons K, Tibby J, Fletcher MS, Moss P, Reeves J, Mooney S,
628	Barrows T, Kemp J, Jansen J, Nanson G, Dosseto A (2013) Climatic records over the past 30 ka
629	from temperate Australia – a synthesis from the OZ-INTIMATE workgroup. Quat Sci Rev 74:
630	58-77
631	Pike KM (1956) Pollen morphology of Myrtaceae from the south-west Pacific area. Aust J Bot 4: 13-
632	53
633	Queensland Herbarium (2013) Regional Ecosystem Description Database (REDD). Version 6.1
634	(February 2013). Queensland Department of Science, Information Technology, Innovation and
635	the Arts: Brisbane
636	Reeves JM, Barrows TT, Cohen TJ, Kiem AS, Bostock HC, Fitzsimmons KE, Jansen JD, Kemp J, Krause
637	C, Petherick L, Phipps SJ (2013) Climate variability over the last 35,000 years recorded in
638	marine and terrestrial archives in the Australian region: an OZ-INTIMATE compilation. Quat Sci
639	Rev 74: 21-34
640	Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS,
641	Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen
642	KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR,
643	Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) INTCAL09 and Marine 09
644	radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51: 1111-1150
645 646	Rieley G, Collier RJ, Jones DM, Eglinton G, Eakin PA, Fallick AE (1991) Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds. Nature 352: 425-427
647 648	Ryan TS (2012) Technical Descriptions of Regional Ecosystems of Southeast Queensland. Queensland Herbarium, Brisbane.
649 650	Sachs JP, Pahnke K, Smittenberg R, Zhang Z (2007) Biomarker indicators of past climate. In Elias S (ed) Encyclopedia of Quaternary Science. Elsevier, Amsterdam, pp 19-48
651	Smith BN, Epstein S (1971) Two categories of ¹³ C/ ¹² C ratios for higher plants. Plant Physiol 47: 380-
652	384
653	Smittenberg RH, Baas M, Schouten S, Sinninghe Damsté JS (2005) The demise of the alga
654	Botryococcus braunii from a Norwegian Fjord was due to early eutrophication. The Holocene
655	15: 133-140
656	Street-Perrott FA, Huang Y, Perrott RA, Eglinton G, Barker P, Khelifa LB, Harkness DD, Olago DO
657	(1997) Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science
658	278: 1422-1426
659 660	Tieszen LL (1991) Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and palaeoecology. J Archaeol Sci 18: 227-248
661	Timms BV (1986) The coastal dune lakes of eastern Australia. In: De Deckker P, Williams WD (eds)
662	Limnology in Australia. Springer Nederlands, pp 421-432

663	Ulm S, Hall J (1996) Radiocarbon and cultural chronologies in southeast Queensland prehistory.
664	Tempus 6: 45-62
665	Ulm S (2011) Coastal foragers on southern shores: marine resource use in northeast Australia since
666	the late Pleistocene. In: Bicho NF, Haws JA, Davis LG (eds) Trekking the shore: changing
667	coastlines and the antiquity of coastal settlement. Springer, New York, pp 441-461
668	Vandergoes, M.J., Prior, C.A., 2003. AMS dating of pollen concentrates - a methodological study of
669	late Quaternary sediments from south westland, New Zealand. Radiocarbon 45, 479-491.
670	Verschuren D (2003) Lake-based climate reconstruction in Africa: progress and challenges.
671	Hydrobiologia 500: 315-330
672 673 674	Walker WG, Davidson GR, Lange T, Wren D (2007) Accurate lacustrine and wetland sediment accumulation rates determined from ¹⁴ C activity of bulk sediment fractions. Radiocarbon 49: 983-992.
675 676 677	Williams M, Cook E, van der Kaars S, Barrows T, Shulmeister J, Kershaw P (2009) Glacial and deglacial climatic patterns in Australia and surrounding regions from 35,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. Quat Sci Rev 28: 2398-2419
678	Woltering M, Atahan P, Grice K, Heijnis H, Taffs K, Dodson J (2014) Glacial and Holocene terrestrial
679	temperature variability in subtropical east Australia: branched GDGT distributions in a
680	sediment core from Lake McKenzie. Quat Res 82: 132-145

Table 1 Total ²¹⁰Pb, Supported ²¹⁰Pb, Unsupported ²¹⁰Pb, and particle size results for samples taken

from core LM1. Calendar age estimates using the CIC and CRS models are shown (Appleby and

684 Oldfield, 1978; Appleby, 2001). Both the original depths measured on core LM1 and the

685 corresponding depths on core LM2, as estimated using tie-points on Total Organic Carbon (%)

686 curves, are shown.

Depth Interval measured on core LM1 (cm)	Corresponding depth interval on core LM2 (cm)	Total ²¹⁰ Pb (Bq kg ⁻¹)	Supported ²¹⁰ Pb (Bq kg ⁻¹)	Unsupported ²¹⁰ Pb* (Bq kg ⁻¹)	Particle size ≤62.5 μm (%)	Calculated CIC age (years)	Calculated CRS age (years)
0.00-0.25	0.0-0.7	614 ± 12	14 ± 2	601 ± 12	74.0	5 ± 5	5 ± 2
0.25-0.50	0.7-1.4	491 ± 24	18 ± 2	484 ± 24	74.0	15 ± 5	13 ± 4
1.50-1.75	4.1-4.8	168 ± 6	19 ± 2	150 ± 6	90.0	65 ± 7	64 ± 8
1.75-2.00	4.8-5.5	98 ± 4	15 ± 2	85 ± 5	77.6	75 ± 8	76 ± 9
3.00-3.50	7.0-7.8	31 ± 1	20 ± 2	12 ± 2	83.9	131 ± 14	130 ± 11
4.50-4.75	9.4-9.8	38 ± 1	27 ± 3	11 ± 3	78.9	-	-
4.75-5.00	9.8-10.2	76 ± 4	63 ± 6	13 ± 7	79.9	-	-
6.00-6.25	11.7-12.2	86 ± 4	22 ± 3	67 ± 5	69.9	-	-
6.25-6.50	12.2-12.6	102 ± 5	42 ± 4	62 ± 6	72.5	-	-
7.00-7.25	13.4-13.8	34 ± 2	33 ± 3	1 ± 4	73.3	-	-
7.25-7.50	13.8-14.2	31 ± 2	33 ± 3	not detected	83.5	-	-
8.00-8.25	15.0-15.2	63 ± 3	28 ± 3	36 ± 4	81.5	-	-
8.25-8.50	15.2-15.5	63 ± 3	32 ± 3	32 ± 5	68.7	-	-
	Interval measured on core LM1 (cm) 0.00-0.25 0.25-0.50 1.50-1.75 1.75-2.00 3.00-3.50 4.50-4.75 4.75-5.00 6.00-6.25 6.25-6.50 7.00-7.25 7.25-7.50 8.00-8.25	Interval measured on core LM1 (cm)depth interval on core LM2 (cm)0.00-0.250.0-0.70.25-0.500.7-1.41.50-1.754.1-4.81.75-2.004.8-5.53.00-3.507.0-7.84.50-4.759.4-9.84.75-5.009.8-10.26.00-6.2511.7-12.26.25-6.5012.2-12.67.00-7.2513.4-13.87.25-7.5013.8-14.28.00-8.2515.0-15.28.25-8.5015.2-15.5	Interval measured on core LM1 (cm)depth interval on core LM2 (cm)Total 210 Pb (Bq kg ⁻¹)0.00-0.250.0-0.7614 ± 120.25-0.500.7-1.4491 ± 241.50-1.754.1-4.8168 ± 61.75-2.004.8-5.598 ± 43.00-3.507.0-7.831 ± 14.50-4.759.4-9.838 ± 14.75-5.009.8-10.276 ± 46.00-6.2511.7-12.286 ± 46.25-6.5012.2-12.6102 ± 57.00-7.2513.8-14.231 ± 28.00-8.2515.0-15.263 ± 38.25-8.5015.2-15.563 ± 3	Interval measured on core LM1 (cm)depth interval on core LM2 (cm)Total 210Pb (Bq kg 1)Supported 210Pb (Bq kg 1)0.00-0.250.0-0.7614 ± 1214 ± 20.25-0.500.7-1.4491 ± 2418 ± 21.50-1.754.1-4.8168 ± 619 ± 21.75-2.004.8-5.598 ± 415 ± 23.00-3.507.0-7.831 ± 120 ± 24.50-4.759.4-9.838 ± 127 ± 34.75-5.009.8-10.276 ± 463 ± 66.00-6.2511.7-12.286 ± 422 ± 36.25-6.5012.2-12.6102 ± 542 ± 47.00-7.2513.8-14.231 ± 233 ± 38.00-8.2515.0-15.263 ± 328 ± 38.25-8.5015.2-15.563 ± 332 ± 3	Interval measured on core LM1 (cm)depth interval on core LM2 (cm)Total ^{210}Pb (Bq kg $^{-1}$)Supported ^{210}Pb (Bq kg $^{-1}$)Unsupported ^{210}Pb (Bq kg $^{-1}$)0.00-0.250.0-0.7 614 ± 12 14 ± 2 601 ± 12 0.25-0.500.7-1.4 491 ± 24 18 ± 2 484 ± 24 1.50-1.75 $4.1-4.8$ 168 ± 6 19 ± 2 150 ± 6 1.75-2.00 $4.8-5.5$ 98 ± 4 15 ± 2 85 ± 5 3.00-3.50 $7.0-7.8$ 31 ± 1 20 ± 2 12 ± 2 $4.50-4.75$ $9.4-9.8$ 38 ± 1 27 ± 3 11 ± 3 $4.75-5.00$ $9.8-10.2$ 76 ± 4 63 ± 6 13 ± 7 $6.00-6.25$ $11.7-12.2$ 86 ± 4 22 ± 3 67 ± 5 $6.25-6.50$ $12.2-12.6$ 102 ± 5 42 ± 4 62 ± 6 $7.00-7.25$ $13.4-13.8$ 34 ± 2 33 ± 3 1 ± 4 $7.25-7.50$ $13.8-14.2$ 31 ± 2 33 ± 3 not detected $8.00-8.25$ $15.0-15.2$ 63 ± 3 22 ± 3 36 ± 4 $8.25-8.50$ $15.2-15.5$ 63 ± 3 32 ± 3 32 ± 5	Interval measured on core LM1 (cm)depth interval on core LM2 (cm)Total ^{210}Pb (Bq kg $^{-1}$)Supported ^{210}Pb (Bq kg $^{-1}$)Particle size $^{210}Pb^{*}$ (Bq kg $^{-1}$)Particle size $^{520}S_{D}^{+}$ (Bq kg $^{-1}$)Particle size $^{520}S_{D}^{+}$ (Bq kg $^{-1}$)Particle size $^{520}S_{D}^{+}$ (Bq kg $^{-1}$)Particle size $^{520}S_{D}^{+}$ 	Interval measured on core LM1 (cm)depth interval on core LM2 (cm)Total ^{210}Pb (Bq kg $^{-1}$)Supported ^{210}Pb (Bq kg $^{-1}$)Particle size $^{210}Pb^*$ (Bq kg $^{-1}$)Particle size $^{622.5 \ \mum}$ Calculated CIC age (years)0.00-0.250.0-0.7 614 ± 12 14 ± 2 601 ± 12 74.0 5 ± 5 0.25-0.500.7-1.4 491 ± 24 18 ± 2 484 ± 24 74.0 5 ± 5 1.50-1.75 $4.1-4.8$ 168 ± 6 19 ± 2 150 ± 6 90.0 65 ± 7 1.75-2.00 $4.8-5.5$ 98 ± 4 15 ± 2 85 ± 5 77.6 75 ± 8 3.00-3.50 $7.0-7.8$ 31 ± 1 20 ± 2 12 ± 2 83.9 131 ± 14 $4.50-4.75$ $9.4-9.8$ 38 ± 1 27 ± 3 11 ± 3 78.9 $ 4.75-5.00$ $9.8-10.2$ 76 ± 4 63 ± 6 13 ± 7 79.9 $ 6.00-6.25$ $11.7-12.2$ 86 ± 4 22 ± 3 67 ± 5 69.9 $ 6.25-6.50$ $12.2-12.6$ 102 ± 5 42 ± 4 62 ± 6 72.5 $ 7.00-7.25$ $13.8-14.2$ 31 ± 2 33 ± 3 1 ± 4 73.3 $ 7.25-7.50$ $13.8-14.2$ 31 ± 2 33 ± 3 not detected 83.5 $ 8.00-8.25$ $15.0-15.2$ 63 ± 3 28 ± 3 36 ± 4 81.5 $ 8.25-8.50$ $15.2-15.5$ 63 ± 3 32 ± 3 32 ± 5 68.7 $-$

687 *decay corrected to a fixed date

688

689

690

691 **Table 2** AMS ¹⁴C dates and calibrated age ranges for pollen residues and wood samples with depths

692 measured on core LM2.

693

Lab code	Depth (cm)	Core	Composition	¹⁴ C age (yrs BP)	Error (1σ)	Calibrated age-range (cal yr BP; 2σ)
OZN683	10-11	LM2	Pollen	2,395	± 35	2,183 - 2,654
OZN684	15-16	LM2	Pollen	3,785	± 35	3,931 - 4,230
OZN685	20-21	LM2	Pollen	6,485	± 50	7,260 - 7,431
OZO411	23-24	LM2	Pollen	4,515	± 40	5,044 - 5,309
OZN686	25-26	LM2	Pollen	12,110	± 70	13,786 - 14,148
OZO412	26-27	LM2	Pollen	15,100	± 70	18,026 - 18,589
OZN687	30-31	LM2	Pollen	18,670	± 100	21,872 - 22,545
OZN688	35-36	LM2	Pollen	23,270	± 120	27,785 - 28,499
OZN689	40-41	LM2	Pollen	30,940	± 190	34,924 - 36,280
OZN690	45-46	LM2	Pollen	31,870	± 180	35,575 - 36,783
OZN680	21.3-21.5	LM1	Pollen	19,150	± 210	22,330 - 23,428
OZN681	21.3-21.5	LM1	Wood	11,470	± 60	13,188 - 13,457

Table 3 δ^{13} C values of *n*-alkanes and botryococcene compounds at different depths in core LM2. The

698 maximum per mil deviation of the measurements is shown in brackets below each δ^{13} C value. The

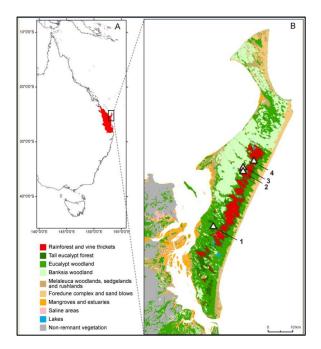
699 dash symbol indicates where no data is available.

700														
			<i>n</i> -alkan	e δ ¹³ C (%	•)			Botryococcenes δ ¹³ C (‰)						
Depth (cm)	C23	C25	C27	C29	C31	C33	A2	C1	C2	B3	B4	C3	C4	Zone
1-2	-38.6 (0.0)	-36.6 (0.0)	-34.4 (0.4)	-33.0 (0.0)	-33.2 (0.2)	-33.0 (0.0)	-	-	-	-	-	-	-	LM2-5
10-11	-	-	-	-34.1 (0.1)	-33.5 (0.1)	-33.0 (0.0)	-	-	-	-	-	-	-	LM2-4
21-22	-35.4 (0.3)	-34.6 (0.1)	-32.7 (0.4)	-32.2 (0.0)	-32.7 (0.3)	-34.5 (0.0)	-	-	-25.7 (0.4)	-	-	-	-	1112 2
24-25	-	-35.9 (0.0)	-32.4 (0.4)	-31.3 (1.5)	-31.9 (0.5)	-32.2 (0.3)	-	-24.6 (0.2)	-22.6 (0.2)	-	-	-24.1 (1.2)	-	LM2-3
27-28	-	-35.7 (0.0)	-34.0 (1.5)	-31.5 (1.0)	-	-31.8 (0.2)	-32.0 (1.3)	-23.9 (0.2)	-22.5 (0.7)	-23.1 (0.5)	-24.0 (0.4)	-23.1 (0.2)	-24.5 (0.5)	LM2-2
31-32	-	-35.2 (0.2)	-34.3 (0.1)	-30.3 (0.0)	-31.9 (0.0)	-31.2 (0.2)	-29.8 (0.0)	-23.6 (0.2)	-24.3 (0.2)	-	-23.7 (0.1)	-22.8 (0.2)	-24.6 (0.1)	
38-39	-	-	-32.0 (0.7)	-32.7 (0.2)	-32.4 (0.0)	-31.9 (0.1)	-	-26.9 (0.1)	-23.6 (0.0)	-25.1 (0.2)	-26.2 (0.1)	-25.3 (0.2)	-27.2 (0.1)	LM2-1

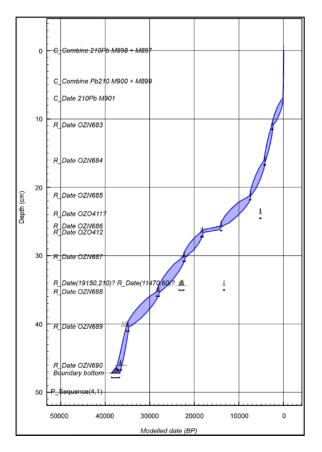
704 Figure captions

Fig. 1 A location of the South Eastern Bioregion on the east coast of the Australian continent (red 705 706 coloured area). B Vegetation map of Fraser Island (Queensland Herbarium, 2013). The white 707 triangles mark locations of (1) Lake McKenzie; (2) Hidden Lake; (3) Old Lake Coomboo Depression 708 (OLCD); and (4) Allom Lake. 709 Fig. 2 Age-depth diagram for Lake McKenzie incorporating AMS ¹⁴C and ²¹⁰Pb ages. The IntCal09 710 711 calibration curve (Reimer et al., 2009) and the OxCal P_Sequence program (k = 4) (Bronk Ramsey, 712 2008, 2009) were used to construct the deposition model. 713 714 Fig. 3 Diagram showing elemental composition and stable isotope carbon and nitrogen isotope 715 ratios measured for the Lake McKenzie core LM2. Concentrations of biomarker compounds are also 716 shown as a sum of the 9 botryococcene compounds observed in the samples, individual concentrations of two botryococcenes (A2 and C0) and concentrations of the C₂₀ HBI. The shaded 717 718 area indicates the location of the hiatus suggested by radiocarbon ages on contiguous samples. 719 720 Fig. 4 Total ion chromatogram of saturate fraction of Lake McKenzie core LM3, from A: 1 cm depth 721 and B: 31 cm depth. Filled squares refer to n-alkanes and the number above the square refers to 722 their carbon number. Compounds A2, C1, C2, B3, B4, C3, C4 and C5 are observed botryococcene 723 compounds. 724 725 Fig. 5 Pollen diagram for Lake McKenzie core LM2. Pollen data is presented as percentages of the total terrestrial pollen sum; the units for total pollen are grains g⁻¹; and the units for micro-charcoal 726 and *Botryococcus* are cm² g⁻¹. 727

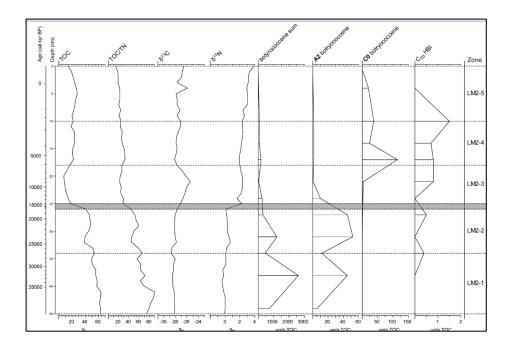
Supplementary Material


The Kováts indexes and diagnostic MS ions for botryococcene compounds identified in the Lake

McKenzie sediments.


MF	MW	Compound	К.І.	Diagnostic ions in mass spectra (m/z)
$C_{34}H_{66}$	474	A2	2765	474 (9), 291 (22), 207 (7), 137 (44), 123 (50), 109 (61), 81 (100)
$C_{34}H_{62}$	470	C1	2775	470 (4), 455 (10), 231 (34), 203 (68), 177 (85), 109 (84), 81 (100)
$C_{34}H_{58}$	466	CO	2788	466 (3), 285 (7), 231 (11), 177 (100), 149 (40), 123 (79), 95 (78)
$C_{34}H_{64}$	472	C2	2800	472 (22), 443 (14), 233 (14), 178 (100), 123 (89), 109 (84), 83 (78)
$C_{34}H_{60}$	468	B3	2812	468 (10), 453 (4), 287 (27), 205 (12), 178 (43), 123 (100), 95 (77)
$C_{34}H_{64}$	472	B4	2823	472 (17), 443 (14), 233 (17), 178 (96), 164 (40), 83 (100), 57 (98)
$C_{36}H_{66}$	498	C3	2924	498 (14), 469 (6), 233 (8), 178 (78), 123 (84), 109 (84), 83 (100)
$C_{36}H_{68}$	500	C4	2967	500 (14), 471 (9), 233 (11), 178 (100), 123 (91), 109 (84), 57 (100)
C ₃₇ H ₆₈	512	C5	3026	512 (14), 483 (5), 233 (8), 178 (81), 123 (81), 109 (77), 83 (100)

MF = molecular formula; MW = molecular weight; KI = pseudo Kováts retention index: $100_n + 100^*[(R_x - R_n)/(R_{n+1} - R_n)]$ where x = compound of interest, n = carbon number of the nearest n-alkane eluting in front of x on the GC; R = retention


735 time. The numbers in brackets following the diagnostic ions are the relative intensity compared to that of the base peak.

