775 research outputs found

    Intensity modulated radiation therapy for breast cancer: Current perspectives

    Get PDF
    open9noBackground: Owing to highly conformed dose distribution, intensity modulated radiation therapy (IMRT) has the potential to improve treatment results of radiotherapy (RT). Postoperative RT is a standard adjuvant treatment in conservative treatment of breast cancer (BC). The aim of this review is to analyze available evidence from randomized controlled trials (RCTs) on IMRT in BC, particularly in terms of reduction of side effects. Methods: A literature search of the bibliographic database PubMed, from January 1990 through November 2016, was performed. Only RCTs published in English were included. Results: Ten articles reporting data from 5 RCTs fulfilled the selection criteria and were included in our review. Three out of 5 studies enrolled only selected patients in terms of increased risk of toxicity. Three studies compared IMRT with standard tangential RT. One study compared the results of IMRT in the supine versus the prone position, and one study compared standard treatment with accelerated partial breast IMRT. Three studies reported reduced acute and/or late toxicity using IMRT compared with standard RT. No study reported improved quality of life. Conclusion: IMRT seems able to reduce toxicity in selected patients treated with postoperative RT for BC. Further analyses are needed to better define patients who are candidates for this treatment modality.openBuwenge, Milly; Cammelli, Silvia; Ammendolia, Ilario; Tolento, Giorgio; Zamagni, Alice; Arcelli, Alessandra; Macchia, Gabriella; Deodato, Francesco; Cilla, Savino; Morganti, Alessio G.Buwenge, Milly; Cammelli, Silvia; Ammendolia, Ilario; Tolento, Giorgio; Zamagni, Alice; Arcelli, Alessandra; Macchia, Gabriella; Deodato, Francesco; Cilla, Savino; Morganti, Alessio G

    Stereotactic radiotherapy of pancreatic cancer: A systematic review on pain relief

    Get PDF
    Locally advanced pancreatic carcinoma (LAPC) has a poor prognosis and the purpose of treatment is survival prolongation and symptom palliation. Radiotherapy has been reported to reduce pain in LAPC. Stereotactic RT (SBRT) is considered as an emerging radiotherapy technique able to achieve high local control rates with acceptable toxicity. However, its role in pain palliation is not clear. To review the impact on pain relief with SBRT in LAPC patients, a literature search was performed on PubMed, Scopus, and Embase (January 2000\u2013December 2017) for prospective and retrospective articles published in English. Fourteen studies (479 patients) reporting the effect of SBRT on pain relief were finally included in this analysis. SBRT was delivered with both standard and/or robotic linear accelerators. The median prescribed SBRT doses ranged from 16.5 to 45 Gy (median: 27.8 Gy), and the number of fractions ranged from 1 to 6 (median: 3.5). Twelve of the 14 studies reported the percentage of pain relief (in patients with pain at presentation) with a global overall response rate (complete and partial response) of 84.9% (95% CI, 75.8%\u201391.5%), with high heterogeneity (Q2 test: P<0.001; I2=83.63%). All studies reported toxicity data. Acute and late toxicity (grade 653) rates were 3.3%\u201318.0% and 6.0%\u20138.2%, respectively. Reported gastrointestinal side effects were duodenal obstruction/ ulcer, small bowel obstruction, duodenal bleeding, hemorrhage, and gastric perforation. SBRT achieves pain relief in most patients with pancreatic cancer with an acceptable gastrointestinal toxicity rate. Further prospective studies are needed to define optimal dose/fractionation and the best systemic therapies modality integration to reduce toxicity and improve the palliative outcome. Finally, the quality of life and, particularly, pain control should be considered as an endpoint in all future trials on this emerging treatment technique

    Pain Relief after Stereotactic Radiotherapy of Pancreatic Adenocarcinoma: An Updated Systematic Review

    Get PDF
    Severe pain is frequent in patients with locally advanced pancreatic ductal adenocarcinoma (PDCA). Stereotactic body radiotherapy (SBRT) provides high local control rates in these patients. The aim of this review was to systematically analyze the available evidence on pain relief in patients with PDCA. We updated our previous systematic review through a search on PubMed of papers published from 1 January 2018 to 30 June 2021. Studies with full available text, published in English, and reporting pain relief after SBRT on PDCA were included in this analysis. Statistical analysis was carried out using the MEDCALC statistical software. All tests were two-sided. The I-2 statistic was used to quantify statistical heterogeneity (high heterogeneity level: >50%). Nineteen papers were included in this updated literature review. None of them specifically aimed at assessing pain and/or quality of life. The rate of analgesics reduction or suspension ranged between 40.0 and 100.0% (median: 60.3%) in six studies. The pooled rate was 71.5% (95% CI, 61.6-80.0%), with high heterogeneity between studies (Q(2) test: p < 0.0001; I-2 = 83.8%). The rate of complete response of pain after SBRT ranged between 30.0 and 81.3% (median: 48.4%) in three studies. The pooled rate was 51.9% (95% CI, 39.3-64.3%), with high heterogeneity (Q(2) test: p < 0.008; I-2 = 79.1%). The rate of partial plus complete pain response ranged between 44.4 and 100% (median: 78.6%) in nine studies. The pooled rate was 78.3% (95% CI, 71.0-84.5%), with high heterogeneity (Q(2) test: p < 0.0001; I-2 = 79.4%). A linear regression with sensitivity analysis showed significantly improved overall pain response as the EQD2 alpha/beta:10 increases (p: 0.005). Eight papers did not report any side effect during and after SBRT. In three studies only transient acute effects were recorded. The results of the included studies showed high heterogeneity. However, SBRT of PDCA resulted reasonably effective in producing pain relief in these patients. Further studies are needed to assess the impact of SBRT in this setting based on Patient-Reported Outcomes

    A SHort course Accelerated RadiatiON therapy (SHARON) dose-escalation trial in older adults head and neck non-melanoma skin cancer

    Get PDF
    Objectives: To assess feasibility and safety of a SHort-course Accelerated RadiatiON therapy (SHARON) regimen, in the treatment of non-melanoma skin cancers (NMSC) in older patients.Methods: Old patients (age >= 80 years) with histological confirmed non-melanoma skin cancers were enrolled. The primary endpoint was to determine the maximum tolerated dose (MTD). Radiotherapy regimen was based on the delivery of four radiotherapy fractions (5 Gy per fraction) with a twice daily fractionation in two consecutive days, Three different level of dose were administered: 20 Gy (one cycle), 40 Gy (two cycles) and 60 Gy (three cycles).Results: Thirty patients (median age: 91 years; range: 80-96) were included in this analysis, Among fourteen patients who completed the one cycle, only one (7%) experimented acute G4 skin toxicity. Twelve patients reported an improvement or resolution of baseline symptoms (overall palliative response rate: 85.8%). Nine and seven patients underwent to two and three RT cycles, respectively: of these, no G3 toxicities were recorded. The overall response rate was 100% when three cycles were delivered. The overall six-month symptom-free survival was 787% and 77.8% in patients treated with one course and more courses, respectively.Conclusions: Short-course accelerated radiotherapy in older patients with non-melanoma skin cancers is well tolerated. High doses seem to be more effective in terms of response rate.Advances in knowledge: This approach could represent an option for older adults with NMSC, being both palliative (one course) or potentially curative (more courses) in the aim, accordingly to the patient's condition

    Unraveling the safety of adjuvant radiotherapy in prostate cancer: impact of older age and hypofractionated regimens on acute and late toxicity - a multicenter comprehensive analysis

    Get PDF
    BackgroundThe objective of this study was to assess the impact of age and other patient and treatment characteristics on toxicity in prostate cancer patients receiving adjuvant radiotherapy (RT).Materials and methodsThis observational study (ICAROS-1) evaluated both acute (RTOG) and late (RTOG/EORTC) toxicity. Patient- (age; Charlson’s comorbidity index) and treatment-related characteristics (nodal irradiation; previous TURP; use, type, and duration of ADT, RT fractionation and technique, image-guidance systems, EQD2 delivered to the prostate bed and pelvic nodes) were recorded and analyzed.ResultsA total of 381 patients were enrolled. The median EQD2 to the prostate bed (α/β=1.5) was 71.4 Gy. The majority of patients (75.4%) were treated with intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT). Acute G3 gastrointestinal (GI) and genitourinary (GU) toxicity rates were 0.5% and 1.3%, respectively. No patients experienced >G3 acute toxicity. The multivariable analysis of acute toxicity (binomial logistic regression) showed a statistically significant association between older age (> 65) and decreased odds of G≥2 GI acute toxicity (OR: 0.569; 95%CI: 0.329-0.973; p: 0.040) and decreased odds of G≥2 GU acute toxicity (OR: 0.956; 95%CI: 0.918-0.996; p: 0.031). The 5-year late toxicity-free survival rates for G≥3 GI and GU toxicity were 98.1% and 94.5%, respectively. The only significant correlation found (Cox’s regression model) was a reduced risk of late GI toxicity in patients undergoing hypofractionation (HR: 0.38; 95% CI: 0.18-0.78; p: 0.008).ConclusionsThe unexpected results of this analysis could be explained by a “response shift bias” concerning the protective effect of older age and by treatment in later periods (using IMRT/VMAT) concerning the favorable effect of hypofractionation. However, overall, the study suggests that age should not be a reason to avoid adjuvant RT and that the latter is well-tolerated even with moderately hypofractionated regimens

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Long-range angular correlations on the near and away side in p&#8211;Pb collisions at

    Get PDF

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe
    corecore