98 research outputs found

    WISE-2005: prolongation of left ventricular pre-ejection period with 56 days head-down bed rest in women

    Get PDF
    This study tested the hypothesis that prolonged physical deconditioning affects the coupling of left ventricular depolarization to its ejection (the pre-ejection period, PEPi) and that this effect is minimized by exercise countermeasures. Following assignment to non-exercise (Control) and exercise groups (Exercise), 14 females performed 56 days of continuous head-down tilt bed rest. Measurements of the electrocardiogram (ECG) and stroke volume (Doppler ultrasound) during supine rest were obtained at baseline prior to (Pre) and after (Post) the head-down tilt bed rest (HDBR) period. Compared with Pre, the PEPi was increased following head-down tilt bed rest (main effect, P \u3c 0.005). This effect was most dominant in the Control group [Pre = 0.038 ± 0.06 s (s.d.) versus Post = 0.054 ± 0.011 s; P \u3c 0.001]. In the Exercise group, PEPi was 0.032 ± 0.005 s Pre and 0.038 ± 0.018 s Post; P= 0.08. Neither the QRS interval nor cardiac afterload was modified by head-down tilt bed rest in Control or Exercise groups. Low-dose isoprenaline infusion reversed the head-down tilt bed rest-induced delay in the PEPi. These results suggest that head-down tilt bed rest leads to a delayed onset of systolic ejection following left ventricular depolarization in a manner that is affected little by the exercise countermeasure but is related to Β-adrenergic pathways. The delayed onset of systole following head-down tilt bed rest appears to be related to mechanism(s) affecting contraction of the left ventricle rather than its depolarization. © 2010 The Authors. Journal compilation © 2010 The Physiological Society

    A new variance ratio metric to detect the timescale of compensatory dynamics

    Get PDF
    Understanding the mechanisms governing ecological stability—why a property such as primary productivity is stable in some communities and variable in others—has long been a focus of ecology. Compensatory dynamics, in which anti-synchronous fluctuations between populations buffer against fluctuations at the community level, are a key theoretical mechanism of stability. Classically, compensatory dynamics have been quantified using a variance ratio approach that compares the ratio between community variance and aggregate population variance, such that a lower ratio indicates compensation and a higher ratio indicates synchrony among species fluctuations. However, population dynamics may be influenced by different drivers that operate on different timescales, and evidence from aquatic systems indicates that communities can be compensatory on some timescales and synchronous on others. The variance ratio and related metrics cannot reflect this timescale specificity, yet have remained popular, especially in terrestrial systems. Here, we develop a timescale-specific variance ratio approach that formally decomposes the classical variance ratio according to the timescales of distinct contributions. The approach is implemented in a new R package, called tsvr, that accompanies this paper. We apply our approach to a long-term, multisite grassland community dataset. Our approach demonstrates that the degree of compensation vs. synchrony in community dynamics can vary by timescale. Across sites, population variability was typically greater over longer compared to shorter timescales. At some sites, minimal timescale specificity in compensatory dynamics translated this pattern of population variability into a similar pattern of greater community variability on longer compared to shorter timescales. But at other sites, differentially stronger compensatory dynamics at longer compared to shorter timescales produced lower-than-expected community variability on longer timescales. Within every site, there were plots that exhibited shifts in the strength of compensation between timescales. Our results highlight that compensatory vs. synchronous dynamics are intrinsically timescale-dependent concepts, and our timescale-specific variance ratio provides a metric to quantify timescale specificity and relate it back to the classic variance ratio

    Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection

    Get PDF
    The global supply of COVID-19 vaccines remains limited. An understanding of the immune response that is predictive of protection could facilitate rapid licensure of new vaccines. Data from a randomized efficacy trial of the ChAdOx1 nCoV-19 (AZD1222) vaccine in the United Kingdom was analyzed to determine the antibody levels associated with protection against SARS-CoV-2. Binding and neutralizing antibodies at 28 days after the second dose were measured in infected and noninfected vaccine recipients. Higher levels of all immune markers were correlated with a reduced risk of symptomatic infection. A vaccine efficacy of 80% against symptomatic infection with majority Alpha (B.1.1.7) variant of SARS-CoV-2 was achieved with 264 (95% CI: 108, 806) binding antibody units (BAU)/ml: and 506 (95% CI: 135, not computed (beyond data range) (NC)) BAU/ml for anti-spike and anti-RBD antibodies, and 26 (95% CI: NC, NC) international unit (IU)/ml and 247 (95% CI: 101, NC) normalized neutralization titers (NF) for pseudovirus and live-virus neutralization, respectively. Immune markers were not correlated with asymptomatic infections at the 5% significance level. These data can be used to bridge to new populations using validated assays, and allow extrapolation of efficacy estimates to new COVID-19 vaccines

    Diazoxide choline extended‐release tablet in people with Prader‐Willi syndrome: results from long‐term open‐label study

    Get PDF
    Objective: This study assessed the effect of 1-year administration of diazoxide choline extended-release tablet (DCCR) on hyperphagia and other complications of Prader-Willi syndrome (PWS). Methods: The authors studied 125 participants with PWS, age ≥ 4 years, who were enrolled in the DESTINY PWS Phase 3 study and who received DCCR for up to 52 weeks in DESTINY PWS and/or its open-label extension. The primary efficacy endpoint was Hyperphagia Questionnaire for Clinical Trials (HQ-CT) score. Other endpoints included behavioral assessments, body composition, hormonal measures, and safety. Results: DCCR administration resulted in significant improvements in HQ-CT (mean [SE] −9.9 [0.77], p < 0.0001) and greater improvements in those with more severe baseline hyperphagia (HQ-CT > 22). Improvements were seen in aggression, anxiety, and compulsivity (all p < 0.0001). There were reductions in leptin, insulin, and insulin resistance, as well as a significant increase in adiponectin (all p < 0.004). Lean body mass was increased (p < 0.0001). Disease severity was reduced as assessed by clinician and caregiver (both p < 0.0001). Common treatment-emergent adverse events included hypertrichosis, peripheral edema, and hyperglycemia. Adverse events infrequently resulted in discontinuation (7.2%). Conclusions: DCCR administration to people with PWS was well tolerated and associated with broad-ranging improvements in the syndrome. Sustained administration of DCCR has the potential to reduce disease severity and the burden of care for families

    Genetic Interactions with Age, Sex, Body Mass Index, and Hypertension in Relation to Atrial Fibrillation: The AFGen Consortium

    Get PDF
    It is unclear whether genetic markers interact with risk factors to influence atrial fibrillation (AF) risk. We performed genome-wide interaction analyses between genetic variants and age, sex, hypertension, and body mass index in the AFGen Consortium. Study-specific results were combined using meta-analysis (88,383 individuals of European descent, including 7,292 with AF). Variants with nominal interaction associations in the discovery analysis were tested for association in four independent studies (131,441 individuals, including 5,722 with AF). In the discovery analysis, the AF risk associated with the minor rs6817105 allele (at the PITX2 locus) was greater among subjects ≤ 65 years of age than among those > 65 years (interaction p-value = 4.0 × 10-5). The interaction p-value exceeded genome-wide significance in combined discovery and replication analyses (interaction p-value = 1.7 × 10-8). We observed one genome-wide significant interaction with body mass index and several suggestive interactions with age, sex, and body mass index in the discovery analysis. However, none was replicated in the independent sample. Our findings suggest that the pathogenesis of AF may differ according to age in individuals of European descent, but we did not observe evidence of statistically significant genetic interactions with sex, body mass index, or hypertension on AF risk

    Risk factors associated with failing pre-transmission assessment surveys (pre-TAS) in lymphatic filariasis elimination programs: Results of a multi-country analysis.

    Get PDF
    Achieving elimination of lymphatic filariasis (LF) as a public health problem requires a minimum of five effective rounds of mass drug administration (MDA) and demonstrating low prevalence in subsequent assessments. The first assessments recommended by the World Health Organization (WHO) are sentinel and spot-check sites-referred to as pre-transmission assessment surveys (pre-TAS)-in each implementation unit after MDA. If pre-TAS shows that prevalence in each site has been lowered to less than 1% microfilaremia or less than 2% antigenemia, the implementation unit conducts a TAS to determine whether MDA can be stopped. Failure to pass pre-TAS means that further rounds of MDA are required. This study aims to understand factors influencing pre-TAS results using existing programmatic data from 554 implementation units, of which 74 (13%) failed, in 13 countries. Secondary data analysis was completed using existing data from Bangladesh, Benin, Burkina Faso, Cameroon, Ghana, Haiti, Indonesia, Mali, Nepal, Niger, Sierra Leone, Tanzania, and Uganda. Additional covariate data were obtained from spatial raster data sets. Bivariate analysis and multilinear regression were performed to establish potential relationships between variables and the pre-TAS result. Higher baseline prevalence and lower elevation were significant in the regression model. Variables statistically significantly associated with failure (p-value ≤0.05) in the bivariate analyses included baseline prevalence at or above 5% or 10%, use of Filariasis Test Strips (FTS), primary vector of Culex, treatment with diethylcarbamazine-albendazole, higher elevation, higher population density, higher enhanced vegetation index (EVI), higher annual rainfall, and 6 or more rounds of MDA. This paper reports for the first time factors associated with pre-TAS results from a multi-country analysis. This information can help countries more effectively forecast program activities, such as the potential need for more rounds of MDA, and prioritize resources to ensure adequate coverage of all persons in areas at highest risk of failing pre-TAS

    Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation

    Get PDF
    Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, heart failure, and death. Fourteen genetic loci have been associated with atrial fibrillation in European and Asian ancestry groups. To further define the genetic basis of atrial fibrillation, we performed large-scale, trans-ancestry meta-analyses of common and rare variant association studies. The genome-wide association studies (GWAS) included 17,931 individuals with atrial fibrillation and 115,142 referents; the exome-wide association studies (ExWAS) and rare variant association studies (RVAS) involved 22,346 cases and 132,086 referents. We identified 12 new genetic loci that exceeded genome-wide significance, implicating genes involved in cardiac electrical and structural remodeling. Our results nearly double the number of known genetic loci for atrial fibrillation, provide insights into the molecular basis of atrial fibrillation, and may facilitate the identification of new potential targets for drug discovery

    Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro Imaging genetics through meta analysis (ENIGMA) Consortium

    Get PDF
    BACKGROUND: The profile of cortical neuroanatomical abnormalities in schizophrenia is not fully understood, despite hundreds of published structural brain imaging studies. This study presents the first meta-analysis of cortical thickness and surface area abnormalities in schizophrenia conducted by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Schizophrenia Working Group. METHODS: The study included data from 4474 individuals with schizophrenia (mean age, 32.3 years; range, 11-78 years; 66% male) and 5098 healthy volunteers (mean age, 32.8 years; range, 10-87 years; 53% male) assessed with standardized methods at 39 centers worldwide. RESULTS: Compared with healthy volunteers, individuals with schizophrenia have widespread thinner cortex (left/right hemisphere: Cohen's d = -0.530/-0.516) and smaller surface area (left/right hemisphere: Cohen's d = -0.251/-0.254), with the largest effect sizes for both in frontal and temporal lobe regions. Regional group differences in cortical thickness remained significant when statistically controlling for global cortical thickness, suggesting regional specificity. In contrast, effects for cortical surface area appear global. Case-control, negative, cortical thickness effect sizes were two to three times larger in individuals receiving antipsychotic medication relative to unmedicated individuals. Negative correlations between age and bilateral temporal pole thickness were stronger in individuals with schizophrenia than in healthy volunteers. Regional cortical thickness showed significant negative correlations with normalized medication dose, symptom severity, and duration of illness and positive correlations with age at onset. CONCLUSIONS: The findings indicate that the ENIGMA meta-analysis approach can achieve robust findings in clinical neuroscience studies; also, medication effects should be taken into account in future genetic association studies of cortical thickness in schizophrenia

    Multi-ethnic genome-wide association study for atrial fibrillation

    Get PDF
    Atrial fibrillation (AF) affects more than 33 million individuals worldwide and has a complex heritability. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF

    Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction

    Get PDF
    The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.Peer reviewe
    corecore