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Genetic Interactions with Age, 
Sex, Body Mass Index, and 
Hypertension in Relation to Atrial 
Fibrillation: The AFGen Consortium
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It is unclear whether genetic markers interact with risk factors to influence atrial fibrillation (AF) risk. 
We performed genome-wide interaction analyses between genetic variants and age, sex, hypertension, 
and body mass index in the AFGen Consortium. Study-specific results were combined using meta-
analysis (88,383 individuals of European descent, including 7,292 with AF). Variants with nominal 
interaction associations in the discovery analysis were tested for association in four independent 
studies (131,441 individuals, including 5,722 with AF). In the discovery analysis, the AF risk associated 
with the minor rs6817105 allele (at the PITX2 locus) was greater among subjects ≤ 65 years of age than 
among those > 65 years (interaction p-value = 4.0 × 10−5). The interaction p-value exceeded genome-
wide significance in combined discovery and replication analyses (interaction p-value = 1.7 × 10−8). 
We observed one genome-wide significant interaction with body mass index and several suggestive 
interactions with age, sex, and body mass index in the discovery analysis. However, none was replicated 
in the independent sample. Our findings suggest that the pathogenesis of AF may differ according 
to age in individuals of European descent, but we did not observe evidence of statistically significant 
genetic interactions with sex, body mass index, or hypertension on AF risk.
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Atrial fibrillation (AF) is a common arrhythmia and is associated with increased risk for stroke, heart failure, and 
mortality1–4. Previous studies have demonstrated that increasing age, male sex, high blood pressure, and obesity 
are associated with higher AF risk5–11. AF is heritable12–17, and genetic association studies have identified 16 loci 
tagged by common genetic variants that are associated with AF18–22.

Typically, genome-wide association studies have assumed that the effect of each tested SNP on AF risk is con-
stant across various risk factors, though some data suggest that the effect sizes may differ for different values of 
risk factors. For example, variants at the HIATL1 region have been shown to interact with alcohol consumption 
to affect colorectal cancer risk23. Understanding the differences in magnitudes of effect for SNPs in relation to 
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AF across common clinical risk factors could potentially refine our knowledge about the genetic basis of AF in 
important clinical subsets of individuals. Nevertheless, no large systematic examination of interactions between 
genetic variants and clinical AF risk factors has been conducted.

We therefore aimed to determine whether common genetic variants interact with age, sex, hypertension, and 
body mass index to modify AF risk in a large sample of individuals of European ancestry.

Results
A total of 88,378 subjects, including 7,292 with AF, were included in the discovery analysis (Table 1). The numbers 
of included SNPs and values of genomic inflation factors (λ) for each study (after applying quality control criteria 
for SNP exclusions) are displayed in Supplemental Table 1. Overall, genomic inflation factors ranged from 0.85 to 
1.2 across studies and interaction analyses. Quantile-quantile (QQ) plots of expected versus observed interaction 
p-value distributions for associations of the approximately 2.5 million autosomal SNPs for each interaction anal-
ysis are displayed in Supplemental Fig. 1a–d. Manhattan plots of -log10 (p-value) against the physical coordinates 
of the 22 autosomes are shown in Fig. 1A–D.

Interactions with risk factors at known AF loci. We first evaluated the associations between genetic 
interactions and clinical factors (age, sex, hypertension, and body mass index) with AF at 16 established AF 
susceptibility loci from prior genome-wide association studies (Supplemental Table 2; significance thresh-
old = 6.25 × 10-4, see methods for explanation). We observed significant interactions with age for SNP rs6817105 
(upstream of PITX2 at chromosome locus 4q25; interaction p-value = 4 × 10-5; Table 2). The minor C allele of 
SNP rs6817105 was associated with a greater risk for AF among individuals 65 years of age or younger [odds ratio 
(OR) = 1.75, 95% CI 1.61–1.91, p = 6.2 × 10-36], than among participants older than 65 years (OR = 1.38, 95% CI 
1.28–1.47, p = 6.3 × 10-17). Among other known AF loci, SNP rs3807989 at the CAV1 locus displayed a nominal 
interaction with age that was not statistically significant (interaction p = 2.9 × 10-3; Table 2). However, the major 
G allele was associated with higher AF risk in the younger group (OR = 1.25, 95% CI 1.16–1.34, p = 3.6 × 10-10 
for subjects ≤ 65 years; OR = 1.09, 95% CI 1.03–1.15, p = 1.4 × 10-3 for subjects >65). We did not observe any 
significant interactions between AF-associated SNPs and sex, hypertension, or body mass index.

N with 
AF N total Males, n (%)

Age, 
mean ± SD

Hypertension, 
n (%)

Body mass index, 
kg/m2, mean ± SD

Discovery studies

Incident AF

 AGES* 158 2718 1011(37.2) 76.3 ± 5.46 2144 (78.9) 76.27 ± 5.46

 ARIC* 799 9053 4255 (47.0) 54.3 ± 5.7 2426 (26.8) 27.0 ± 4.8

 CHS* 763 3185 1234 (38.7) 72.2 ± 5.3 1680 (52.8) 26.3 ± 4.4

 FHS* 306 4025 1751 (43.5) 64.7 ± 12.6 1988 (49.5) 27.7 ± 5.2

 MESA* 155 2526 1206 (47.74) 62.66 ± 10.24 975 (38.6) 27.74 ± 5.06

 PREVEND* 113 3520 1811 (50) 49.5 ± 12.4 1157 (30) 26.1 ± 4.3

 PROSPER* 505 5244 2524 (48.1) 75.34 ± 3.35 3257 (62.1) 26.82 ± 4.18

 RS* 591 5665 2282 (40.3) 69.1 ± 8.98 3081 (54.4) 26.32 ± 3.69

 WGHS* 648 20842 0 (0) 54.6 ± 7.0 5022 (24) 25.3 ± 6.7

Prevalent AF

 AFNET/KORA 448 886 524 (59.1) 53.4 ± 7.8 326 (36.8) 27.9 ± 4.6

 AGES 241 2959 1154 (39.0) 76.47 ± 5.50 2359 (79.8) 27.06 ± 4.44

 BioVU o1 238 4766 2552 (53.6) 62.2 ± 16.3 3270 (68.6) 26.2 ± 11.2

 BioVU 660 120 3790 1722 (45.4) 62.8 ± 15.9 1966 (51.9) 24.0 ± 15.0

 CCAF 807 2661 1918 (72.1) 61.7 ± 11.15 1793 (67.4) 29.5 ± 5.78

 FHS 253 4401 1957 (44.5) 65.4 ± 12.8 2215 (50.5) 27.70 ± 5.16

 LURIC 361 2959 2077 (70.2) 63.0 ± 10.6 2154 (72.8) 27.5 ± 4.02

 MGH/MIGEN 366 1277 780 (61.1) 49.5 ± 9.7 — —

 RS 309 5974 2427 (40.6) 69.4 ± 9.1 3273 (54.8) 26.3 ± 3.69

 SHIP 107 1923 927 (48.2) 50.97 ± 15.07 496 (25.8) 27.33 ± 4.56

Replication studies

Incident AF

MDCS 876 7353 3800 (48) 58.8 ± 6.6 5010 (68) 26.1 ± 4.1

Prevalent AF

BEAT-AF 1520 3040 1795 (59) 51.7 ± 18.6 1363 (45) 25.8 ± 4.4

FINCAVAS 940 3021 1835 (61) 61.9 ± 14 2117 (70) 27.5 ± 4.5

UK Biobank 2386 118027 55669 (47) 56.9 ± 7.9 25307 (21) 27.5 ± 4.8

Table 1. Subject Characteristics. Abbreviations: AF: atrial fibrillation; NA: not available; SD: standard 
deviation. *Information at DNA collection.
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Interactions with risk factors in genome-wide analyses. Table 3 displays the results for SNP inter-
actions with AF risk factors across the genome. The most significant genetic interaction that exceeded our 
genome-wide significance threshold (an interaction p-value < 4 × 10-8, see methods for explanation) was 
observed for SNP rs12416673 with body mass index (interaction p = 2.9 × 10-8; 6.4 kb upstream of COL13A1 at 
chromosome region 10q21; Table 3; Supplemental Figure 2). Specifically, with each 1-unit increase in body mass 
index, each copy of the minor A allele of SNP rs12416673 was associated with an increased risk for AF (interac-
tion β = 0.0224, interaction p = 2.9 × 10-8). Additionally, we observed 8 loci that exhibited suggestive interactions 
with AF risk factors (i.e., the interaction p-value was < 1 × 10-6 for the top SNP, and two or more SNPs in the 

Figure 1. Manhattan plots of genetic interactions with age, sex, body mass index, and hypertension in relation 
to AF risk. The red line shows the significant interaction p-value threshold (p < 4 × 10-8), and the blue line 
shows the suggestive significant interaction p-value threshold (p < 1 × 10-6).

http://2


www.nature.com/scientificreports/

5Scientific RepoRts | 7: 11303  | DOI:10.1038/s41598-017-09396-7

same region exhibited interaction p-values < 1 × 10-5). Specifically, we observed interactions with age at 2 loci, 
sex at 1 locus, and body mass index at 5 loci (Table 3). No genetic interactions with hypertension exceeded the 
suggestive genome-wide or adjusted AF susceptibility locus significance thresholds.

SNP
A1/
A2

A1 
freq Loc

Closest 
gene

SNP and AF risk factor interaction

Age Sex Body mass index Hypertension

Interaction β *(se) p Interaction β (se) p Interaction β (se) p Interaction β (se) p

rs6666258 C/G 0.30 1q21 KCNN3 0.0979 (0.048) 0.04 0.0092 (0.045) 0.84 -0.0023 (0.005) 0.62 0.024 (0.045) 0.60

rs3903239 G/A 0.44 1q24 PRRX1 0.0661 (0.044) 0.13 -0.050 (0.041) 0.23 0.0021 (0.004) 0.63 -0.014 (0.041) 0.74

rs4642101 G/T 0.65 3p25 CAND2 0.0828 (0.047) 0.08 0.0425 (0.045) 0.35 -0.0024 (0.005) 0.59 0.0813 (0.045) 0.07

rs1448818 C/A 0.25 4q25 PITX2 0.0207 (0.049) 0.67 0.0285 (0.046) 0.54 0.0094 (0.005) 0.04 -0.0597 (0.045) 0.19

rs6817105 C/T 0.13 4q25 PITX2 0.2420 (0.059) 4.0 × 10-5 0.0065 (0.055) 0.91 0.0078 (0.006) 0.16 -0.0516 (0.055) 0.35

rs4400058 A/G 0.09 4q25 PITX2 0.0665 (0.070) 0.34 -0.0343 (0.068) 0.61 -0.0051 (0.007) 0.47 -0.0406 (0.066) 0.54

rs6838973 C/T 0.57 4q25 PITX2 0.0636 (0.045) 0.16 -0.0599 (0.043) 0.16 -0.0005 (0.004) 0.90 -0.0823 (0.042) 0.05

rs13216675 T/C 0.69 6q22 GJA1 -0.0287 (0.050) 0.57 0.0869 (0.047) 0.07 0.0064 (0.005) 0.18 0.0616 (0.046) 0.18

rs3807989 G/A 0.60 7q31 CAV1 0.1329 (0.045) 2.9 × 10-3 -0.0054 (0.041) 0.90 -0.0003 (0.004) 0.95 -0.0603 (0.041) 0.14

rs10821415 A/C 0.42 9q22 C9orf3 0.0736 (0.047) 0.11 -0.0039 (0.044) 0.93 0.0012 (0.004) 0.79 -0.0813 (0.043) 0.06

rs10824026 A/G 0.84 10q22 SYNPO2L -0.0035 (0.063) 0.96 -0.0213 (0.059) 0.72 0.0139 (0.006) 0.02 0.258 (0.060) 0.66

rs12415501 T/C 0.16 10q24 NEURL 0.0701 (0.064) 0.27 0.0994 (0.058) 0.09 0.0011 (0.006) 0.85 0.0684 (0.057) 0.23

rs10507248 T/G 0.73 12q24 TBX5 -0.0573 (0.050) 0.25 0.0571 (0.046) 0.22 -0.0025 (0.005) 0.59 -0.0208 (0.046) 0.65

rs1152591 A/G 0.48 14q23 SYNE2 0.0178 (0.045) 0.69 -0.0082 (0.042) 0.85 0.004 (0.004) 0.35 0.0255 (0.042) 0.54

rs7164883 G/A 0.16 15q24 HCN4 -0.0294 (0.058) 0.61 0.0284 (0.054) 0.60 0.0016 (0.006) 0.78 -0.0271 (0.055) 0.62

rs2106261 T/C 0.18 16q22 ZFHX3 0.0106 (0.057) 0.85 0.0434 (0.054) 0.42 -0.0021 (0.006) 0.71 0.110 (0.053) 0.04

Table 2. Multiplicative SNP interactions with AF risk factors at known AF loci. The significance threshold 
0.01/16 = 6.25 × 10-4. Abbreviations: AF: atrial fibrillation; A1: allele 1; the risk allele was defined based on a 
prior GWAS56; A2: allele 2; A1 freq: allele 1 frequency; Loc: locus; p: P-value for the interaction between the 
risk factor and the SNP. *Interaction β was from regression using an additive model. Interaction β (se) was 
calculated as the meta-analysis log(effect) in subjects ≤ 65 years of age minus the meta-analysis log(effect) 
in subjects >65 years of age, or as the multiplicative interaction between SNP*risk factor for sex (females vs. 
males), hypertension (hypertensive vs. not), and body mass index (per 1 unit increment).

SNP Loc Closest gene
A1/
A2

Discovery Replication Combined

A1 
freq 
(%) Interaction β (se) p

A1 
freq 
(%)

Interaction β 
(se)* p

A1 
freq 
(%)

Interaction β 
(se)* p

SNP x Age

rs6817105† 4q25 PITX2 C/T 0.13 0.2420 (0.059) 4.0 × 10-5 0.11 0.2213 (0.067) 9.5 × 10-4 0.12 0.2420 (0.043) 1.7 × 10-8

rs3807989† 7q31 CAV1 G/A 0.60 0.1329 (0.045) 2.9 × 10-3 0.59 -0.0531 (0.050) 0.28 0.59 0.0325 (0.032) 3.1 × 10-1

rs2356251 14q22 MAP4K5 C/G 0.06 0.5716 (0.109) 1.6 × 10-7 0.04 -0.1894 (0.123) 0.12 0.05 0.2294 (0.081) 4.5 × 10-3

rs1572779 20q13 MIR548AG2 G/T 0.10 0.3468 (0.070) 7.9 × 10-7 0.09 0.1456 (0.090) 0.10 0.10 0.2446 (0.054) 5.7 × 10-6

SNP x Sex

rs2730668 12q21 TRHDE T/C 0.76 0.2734 (0.052) 1.7 × 10-7 0.76 0.0846 (0.0563) 0.13 0.76 0.1860 (0.0383) 1.2 × 10-6

SNP x Body Mass Index

rs9394492 6q21 BTBD9 T/C 0.36 0.0222 (0.004) 2.7 × 10-7 0.38 -0.0070 (0.005) 0.15 0.37 0.0092 (0.003) 4.1 × 10-3

rs1874425 8q21 ADrA1A T/C 0.25 0.0231 (0.005) 9.3 × 10-7 0.25 0.0070 (0.005) 0.18 0.25 0.0160 (0.004) 5.4 × 10-6

rs1545567 9p24 VLDLR T/C 0.64 -0.0256 (0.005) 4.3 × 10-7 0.65 -0.0010 (0.005) 0.85 0.65 -0.0131 (0.004) 2.3 × 10-4

rs12416673 10q21 COL13A1 A/G 0.43 0.0224 (0.004) 2.9 × 10-8 0.43 -0.0018 (0.005) 0.71 0.43 0.0122 (0.003) 7.1 × 10-5

rs6062828 20q13 LOC105372719/YTHDF1 C/G 0.68 -0.0245 (0.005) 8.6 × 10-7 0.69 -0.0105 (0.005) 0.03 0.69 -0.0174 (0.004) 6.5 × 10-7

Table 3. Discovery and replication analysis results of top SNP interactions with AF risk factors. Abbreviations: 
AF: atrial fibrillation; A1: allele 1; the risk allele was defined based on a prior GWAS56; A2: allele 2; A1 freq: 
allele 1 frequency; Loc: locus; p: P-value for the interaction between the risk factor and the SNP. *Interaction 
β was from regression using additive model. Interaction β (se) was calculated as the meta-analysis log(effect) 
in subjects ≤ 65 years of age minus the meta-analysis log(effect) in subjects > 65 years of age, or as the 
multiplicative interaction between SNP* risk factor for sex (females vs. males) and body mass index (per 1 unit 
increment). †Known AF loci.
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Replication. In total, we selected 10 SNP interactions (Table 3) for replication association testing in four 
independent cohorts (131,441 individuals, including 5,722 with AF). Only one interaction remained significantly 
associated with AF. SNP rs6817105 at the 4q25 locus exhibited a significant interaction with age (interaction 
p = 9.5 × 10-4). As in our discovery analysis, among individuals with the minor C allele of rs6817105, those ≤65 
years old had a greater risk for AF (OR = 1.80; 95% CI 1.67–1.95, p = 6.6 × 10-52), than participants older than 65 
years (OR = 1.45; 95% CI 1.30–1.61, p = 1.4 × 10-11). Similarly, rs6817105 was associated with a 27% higher AF 
risk in subjects ≤65 years of age (compared with subjects >65 years of age) in the combined discovery and repli-
cation analysis (interaction p = 1.7 × 10-8; Fig. 2). A greater risk of AF for the rs6817105 C allele was observed in 
participants aged 65 years or younger (OR = 1.78; 95% CI 1.68–1.89, p = 5.6 × 10-86) than in participants older 
than 65 years (OR = 1.40; 95% CI 1.32–1.49, p = 7.8 × 10-27).

Power calculation. Given the lack of observed associations between SNP interactions with clinical risk fac-
tors and AF, we performed power calculations to estimate power for discovery using Quanto24 (http://biostats.usc.
edu/Quanto.html; Fig. 3). As an example, we estimated power to observe a SNP interaction with sex, assuming 
a population comprised of 50% males, an AF population prevalence of 1%, and a case to control ratio of 1:10 (as 
in our study). We modeled a main effect OR of 1.5 for sex, and a genetic odds ratio of 1.5 for a SNP. We estimated 
that >100,000 AF cases would be a required to achieve 80% power for such an effect size, indicating that we had 
limited power to detect all but substantial genetic interactions with clinical risk factors.

Discussion
In our analysis of ~88,000 individuals of European ancestry, including 7,292 individuals with AF, we observed 
that the well-established AF locus at chromosome region 4q25 (tagged by rs6817105) was associated with a dif-
ferential risk for AF according to age. Specifically, the OR for each copy of the minor rs6817105 allele was 1.78 
for individuals ≤65 years of age, compared to 1.40 for individuals >65 years. Beyond the age interaction with the 
4q25 locus, we did not observe any significant interactions between genetic variants and age, sex, hypertension, 
or body mass index after replication attempts. These findings suggest that strong genetic interactions with the AF 
risk factors studied in this manuscript are unlikely to be prominent mechanisms driving AF susceptibility.

Our findings support and extend prior studies examining genetic interactions for AF. For example, top var-
iants at the 4q25 chromosome locus, upstream of PITX2, were associated with greater AF risks among younger 
individuals in secondary analyses of a genome-wide association study20. However, no formal statistical test 

Figure 2. Age-stratified association between the chromosome 4q25 locus and AF in the combined dataset of 
primary and replication studies. OR and Pmain refer to the odds ratio and p-value for the association test between 
rs6817105 and AF risk in each age-stratum. Pinteraction refers to the p-value corresponding to the difference in 
effect sizes between the two age strata tested.

Figure 3. Number of cases required to detect interaction odds ratios between 1.01 to 1.5 with common SNPs 
(minor allele frequencies (MAF) of 0.05–0.5) with 80% power assuming an AF prevalence of 1%, 50% males, 
SNP marginal effect odds ratios of 1.5, sex marginal effect odds ratios of 1.5, case:control ratios of 1:10, and 
α = 4 × 10-8. Power calculations were performed using Quanto24.
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of interaction was performed. Greater effect sizes of other AF susceptibility SNPs at the 4q25 locus were also 
observed among younger rather than older individuals in some, but not all, cohorts in a large replication study25. 
Moreover, in keeping with our observations, prior studies did not find evidence that AF risk is modified by inter-
actions between SNPs at the 4q25 locus and sex20. Our findings demonstrate that genetic variation at the 4q25 
locus is, on average, associated with greater risks for early-onset AF.

Our findings are consistent with epidemiologic observations demonstrating greater heritability for earlier 
onset of AF16. The stronger effect of the 4q25 locus on AF in a younger population implies that the contribution 
of this locus to AF susceptibility may be more relevant to those with early-onset AF, rather than later onset forms. 
Overall, our observation that genetic variation at the 4q25 locus is associated with AF (beyond genome-wide 
significant thresholds) in both younger and older individuals underscores the predominant role of this locus in 
AF pathogenesis–regardless of age.

PITX2 is a homeobox transcription factor involved in specification of pulmonary vasculature26, cardiac lat-
erality27, and suppression of a left atrial sinoatrial-node like pacemaker28. Heterozygous null Pitx2c mouse hearts 
are more susceptible to pacing induced AF than are wild-type counterparts29. The relative roles of PITX2 regula-
tion in AF susceptibility in both human development and in adult life are unclear. Future larger studies are war-
ranted to systematically determine whether there are different age-specific etiologic subtypes of AF, and whether 
PITX2 modulation varies with age according to genotype.

Although our analysis was not designed to specifically quantify the contribution of genetic factors to AF her-
itability, the absence of observed interactions between AF and sex, body mass index, and hypertension suggests 
that common variant interactions with these clinical risk factors are unlikely to explain a substantial proportion 
of variance in AF susceptibility. Larger studies will be necessary to accurately quantify the contributions of both 
common and rare variation, epigenetic mechanisms, copy-number variation, epistatic effects, and other environ-
mental interactions that may influence AF heritability. Moreover, further examination is needed to determine 
the extent to which the 4q25 locus, the predominant susceptibility locus for AF, explains the heritability of the 
condition.

Our study should be interpreted in the context of the study design. First, we included individuals of European 
ancestry only, so our finding may not be generalizable to other racial groups. Second, AF risk factors were avail-
able only at the time of AF onset in case-control studies, rather than before AF onset, potentially biasing toward 
the null any biologically relevant SNP by risk factor interactions that may occur years before the onset of AF. 
However, we suspect that such misclassification of risk factor status is unlikely to have resulted in systematic bias 
for body mass index (which tends to be relatively stable over time30) and age (because an interaction with age 
and the PITX2 locus is supported by prior observations). Third, our sample size provided limited power to iden-
tify interactions with relatively small effect sizes. Additionally, the use of more powerful statistical approaches31, 
non-multiplicative interactions, and inclusion of additional AF risk factors, may facilitate identification of loci at 
which genetic interactions exist in relation to AF. Fourth, our single SNP interaction approach does not exclude 
a lack of interaction with polygenic susceptibility to AF. Fifth, we acknowledge that AF may be clinically unrec-
ognized, leading to misclassification of AF status, and that we lacked power to analyze AF subtypes separately. 
Future analyses with additional arrhythmia outcomes may help clarify the role of genetic interactions with risk 
factors across a range of arrhythmia phenotypes.

In summary, we identified a significant interaction with age at the AF susceptibility locus on chromosome 
4q25 upstream of PITX2 in individuals of European ancestry. Despite several suggestive SNP interactions with 
common AF risk factors in discovery analyses, we did not observe substantial evidence for such interactions as 
common mechanisms underlying AF risk.

Methods
Study population. Discovery cohorts included the: German Competence Network for Atrial Fibrillation and 
Cooperative Health Research in the Region Augsburg (AFNET/KORA); Age, Gene/Environment Susceptibility 
Reykjavik Study (AGES) study; Atherosclerosis Risk in Communities (ARIC) study; Vanderbilt electronic med-
ical record-linked DNA repository (BioVU); Cleveland Clinic Lone AF study (CCAF); Cardiovascular Health 
Study (CHS); Framingham Heart Study (FHS); Ludwigshafen Risk and Cardiovascular Health (LURIC) study; 
Multi-Ethnic Study of Atherosclerosis (MESA); Massachusetts General Hospital Lone AF study and Myocardial 
Infarction Genetics Consortium (MGH/MIGEN); Prevention of Renal and Vascular End-stage Disease 
(PREVEND) study; PROspective Study of Pravastatin in the Elderly at Risk (PROSPER); Rotterdam Study 
(RS); Study of Health in Pomerania (SHIP); and Women’s Genome Health Study (WGHS). Replication stud-
ies included the: Basel Atrial Fibrillation Cohort Study (Beat-AF); Finnish Cardiovascular Study (FINCAVAS); 
Malmo diet and cancer study (MDCS); and UK Biobank. Detailed descriptions of each study have been previ-
ously reported (Supplemental Methods and Supplemental Table 3).

The study protocol was approved by the Ethical Committee/institutional review boards of Ludwig Maximilian 
University of Munich, National Bioethics Committee, Johns Hopkins Bloomberg School of Public Health, 
University of Minnesota, Vanderbilt University Medical Center, Cleveland Clinic, University of Washington, 
Boston University Medical Campus, Rhineland-Palatinate State Chamber of Physicians, Massachusetts General 
Hospital, University Medical Center Groningen, Leiden University Medical Center, Erasmus MC - University 
Medical Center Rotterdam, University Medicine Greifswald, Brigham and Women’s Hospital, ethics committee 
northwest/central Switzerland, ethics committee Zurich, Pirkanmaa Hospital District, and Lund University. All 
MESA study sites received approval to conduct this research from local institutional review boards at: Columbia 
University (for the MESA New York Field Center), Johns Hopkins University (for the MESA Baltimore Field 
Center), Northwestern University (for the MESA Chicago Field Center), University of California, Los Angeles 
(for the MESA Los Angeles Field Center), University of Minnesota (for the MESA Twin Cities Field Center), 
Wake Forest University Health Sciences Center (for the MESA Winston-Salem Field Center). Written informed 
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consent was obtained from all study subjects or their proxies (except BioVU, which is a de-identified EMR biore-
pository and was “opt-out” prior to December 2014). All experiments were performed in accordance with rele-
vant guidelines and regulations.

AF ascertainment. Ascertainment of AF and risk factors in each study has been described previously10, 14, 32–54,  
Detailed descriptions are provided in Supplemental Table 3. We defined prevalent AF as an event that was diag-
nosed at or prior to an individual’s DNA collection in cohort studies and on the basis of AF ascertainment in 
case-control studies. We defined incident AF as an event that was diagnosed after DNA collection among partici-
pants free of clinically apparent AF at DNA collection in cohort studies. All AF risk factors except age were ascer-
tained at the time of DNA collection. Age was defined at DNA collection or at the date of recruitment in cohort 
studies, and at time of AF diagnosis (for AF cases) or at time of DNA collection (for controls) in case-control 
studies.

Exposure ascertainment. Sex was defined on the basis of self-report. Participants were classified as having 
hypertension if the systolic blood pressure was ≥140 mm Hg or the diastolic blood pressure was ≥90 mm Hg 
at any clinic visit or exam antecedent to DNA collection, or if the participant was receiving treatment with an 
antihypertensive medication and had a self-reported history of hypertension or high blood pressure at the time 
of DNA collection (not applicable in ARIC or FHS; Supplemental Table 3). Body mass index was defined as the 
weight (kg) divided by the height (m) squared. Blood pressure measurements, medication lists, weights, and 
heights were ascertained according to study-specific protocols. All participants in the discovery analysis were 
genotyped on genome-wide SNP array platforms (Supplemental Table 4). Imputed genotypes used in our analysis 
included approximately 2.5 million genetic variants from the HapMap CEU sample (release 22).

Statistical analysis. For each individual study, logistic regression (for prevalent AF; for incident AF in 
MESA and PREVEND only), generalized estimating equations (in FHS to account for related individuals), or 
Cox proportional hazard regression (for incident AF in prospective cohorts other than MESA and PREVEND) 
were performed to examine whether AF was associated with interactions between SNP and AF risk fac-
tors. For Cox models, person-time began at study baseline, and individuals were censored at death or loss to 
follow-up. Robust variance estimates were used when feasible. Details of the regression models are described in 
Supplemental Table 4. All models were adjusted for age (age at baseline for incident AF, and age at AF onset for 
prevalent AF), sex, site (ARIC and CHS), sub-cohort (FHS), study-specific covariates, and population structure, 
if applicable. SNPs with low imputation quality (R-square < 0.3) or a minor allele frequency < 0.05 were removed 
from the analysis.

For interaction analyses involving sex, hypertension, and body mass index, main effect terms for each risk fac-
tor, as well as multiplicative interaction terms between each SNP and the respective risk factor, were included in 
the regression models. Regarding analyses of age, nonlinear associations between SNPs and age could potentially 
go undetected, due to variable distributions of age across the studies in our analysis. Additionally, some studies 
had only or mostly early-onset/late-onset AF cases, which limited our ability to perform a regression model with 
dichotomized age in such samples. Therefore, we assessed SNP interactions with age by comparing meta-analysis 
estimates of associations between each SNP and AF in individuals ≤65 versus >65 years of age (see below). 
Studies with <100 AF events in each stratum of age were not included, in order to avoid unstable effect estimates.

Estimators for multiplicative interaction terms were meta-analyzed for sex, hypertension, and body mass 
index analyses in METAL55, using an inverse-variance weighted fixed-effects approach with genomic-control 
correction. For age, we performed an inverse-variance weighted fixed-effects meta-analysis of the estimators for 
each SNP separately within each age stratum, with genomic-control correction. Estimators were compared using 
a Z test, as mentioned above.

SNPs with absolute effect sizes ≥3 or SNPs that were available in only one study were excluded from our 
final results, to minimize the likelihood of spurious false positive findings. For each of the four genome-wide 
interaction assessments, we employed an experiment-wide two sided alpha threshold of 0.05, which we adjusted 
for multiple hypothesis testing. We distributed the alpha differentially across the genome, according to a priori 
hypotheses about interactions between SNPs and AF risk factors. Specifically, we distributed one-fifth of the alpha 
to each of the 16 most significantly associated SNPs at genome-wide significant loci identified in prior studies56, 57 
(interaction p < 0.01/16 = 6.25 × 10-4). The remaining four-fifths of the alpha were distributed evenly across the 
genome, for an alpha threshold of 4 × 10-8 (interaction p < 0.04/~1,000,000 independent tests).

Significantly associated SNPs and SNPs with suggestive associations (i.e., an interaction p < 0.005 at a recog-
nized AF GWAS locus; or an interaction p < 1 × 10-6 combined with interaction p < 1 × 10-5 for two additional 
SNPs within the same ±50 kb region) in the discovery analysis were carried forward for replication testing. In 
total, we carried forward 10 SNPs for replication testing (see below), and therefore assumed a replication interac-
tion p threshold of 0.005 (0.05/10 SNPs). The results of replication studies alone, as well as combined with results 
from discovery studies, were meta-analyzed as described above.
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