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Abstract. Understanding the mechanisms governing ecological stability—why a property such as pri-
mary productivity is stable in some communities and variable in others—has long been a focus of ecology.
Compensatory dynamics, in which anti-synchronous fluctuations between populations buffer against fluc-
tuations at the community level, are a key theoretical mechanism of stability. Classically, compensatory
dynamics have been quantified using a variance ratio approach that compares the ratio between commu-
nity variance and aggregate population variance, such that a lower ratio indicates compensation and a
higher ratio indicates synchrony among species fluctuations. However, population dynamics may be influ-
enced by different drivers that operate on different timescales, and evidence from aquatic systems indicates
that communities can be compensatory on some timescales and synchronous on others. The variance ratio
and related metrics cannot reflect this timescale specificity, yet have remained popular, especially in terres-
trial systems. Here, we develop a timescale-specific variance ratio approach that formally decomposes the
classical variance ratio according to the timescales of distinct contributions. The approach is implemented
in a new R package, called tsvr, that accompanies this paper. We apply our approach to a long-term, multi-
site grassland community dataset. Our approach demonstrates that the degree of compensation vs. syn-
chrony in community dynamics can vary by timescale. Across sites, population variability was typically
greater over longer compared to shorter timescales. At some sites, minimal timescale specificity in compen-
satory dynamics translated this pattern of population variability into a similar pattern of greater commu-
nity variability on longer compared to shorter timescales. But at other sites, differentially stronger
compensatory dynamics at longer compared to shorter timescales produced lower-than-expected commu-
nity variability on longer timescales. Within every site, there were plots that exhibited shifts in the strength
of compensation between timescales. Our results highlight that compensatory vs. synchronous dynamics
are intrinsically timescale-dependent concepts, and our timescale-specific variance ratio provides a metric
to quantify timescale specificity and relate it back to the classic variance ratio.
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INTRODUCTION

The stability of ecosystem functions is central
to the reliable provisioning of ecosystem services
(Oliver et al. 2015), and understanding mecha-
nisms underlying ecological stability is a funda-
mental goal of ecology (MacArthur 1955). A key
insight into ecosystem dynamics is that stable
aggregate functions such as total productivity
can be composed of highly variable components
(Gonzalez and Loreau 2009). For example, com-
pensatory dynamics stabilize productivity when
different populations have offsetting fluctua-
tions, such that increases in the abundance or
biomass of one or more species are accompanied
by decreases in others (Schindler 1990, Bai et al.
2004, Hallett et al. 2014). Conversely, when spe-
cies increase or decrease together (e.g., when spe-
cies share responses to an external driver), the
resulting synchrony increases aggregate commu-
nity variability (Houlahan et al. 2007, Keitt 2008).

Population fluctuations are ubiquitous. Conse-
quently, characterizing patterns of species fluctu-
ations over time and in relation to each other is
essential to understand stability. Importantly,
population fluctuations can be shaped by a vari-
ety of drivers that operate on different time-
scales. For example, acute disturbances are a
strong predictor of population dynamics in some
systems (e.g., heavy rainfall events or cold win-
ters regulating insect dynamics; Mutshinda et al.
2011). In other systems, population dynamics are
driven by long-term climate cycles (Mantua et al.
1997, Sheppard et al. 2016). As a result, commu-
nities may exhibit a timescale specificity such
that synchrony (or compensation) among species
can occur at some timescales but not others
(Downing et al. 2008, Keitt 2008). Moreover, the
co-occurrence of short- and long-timescale dri-
vers in the same system may result in

communities that are synchronous over some
timescales but compensatory over others (ideal-
ized in Fig. 1).
Evaluating timescale specificity in community

variability has a tradition in aquatic ecology
(Vasseur et al. 2005; 2014; Keitt and Fischer 2006;
Vasseur and Gaedke 2007; Downing et al. 2008;
Keitt 2008; Brown et al. 2016), but methods used
there have typically relied on data-hungry tech-
niques that may not be appropriate for shorter
time series. For example, Vasseur et al. (2005)
found that phytoplankton in Lake Constance
showed compensatory dynamics at sub-annual
timescales, driven by grazing and competition
for nutrients, but synchronous dynamics at most
other timescales. Downing et al. (2008) described
how zooplankton in experimental ponds had
synchronous dynamics at short timescales
(~10 d), but had compensatory dynamics at
longer timescales (~80 d). Overall, synchrony has
tended to be more common than compensatory
dynamics in freshwater plankton communities,
and the timescales at which compensatory
dynamics occur appear to be system-specific
(Vasseur et al. 2014, Brown et al. 2016). Time-
scale-dependent approaches have facilitated a
deeper understanding of community stability in
freshwaters.
Compensatory dynamics have been the subject

of debate in terrestrial systems. Some studies
find general evidence for compensatory dynam-
ics (Bai et al. 2004, Hector et al. 2010), others find
them to be context-dependent (Grman et al. 2010,
Hallett et al. 2014, Xu et al. 2015), and others con-
clude that synchronous dynamics dominate ter-
restrial systems (Houlahan et al. 2007, Valone
and Barber 2008). To date, terrestrial ecologists
have relied exclusively on metrics that do not
incorporate timescale (most commonly, those
developed by Schluter 1984, Loreau and de
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Mazancourt 2008, Hallett et al. 2014). These types
of analysis originated with the classic variance
ratio, which can be calculated for the shorter time
series available in these systems (Schluter 1984).
The variance ratio compares the variance of the
aggregate community to the expected variance
under the assumption of independent species
population fluctuations. A variance ratio greater
than one indicates that populations are generally
synchronous, whereas a variance ratio less than
one indicates compensation (Peterson 1975, Sch-
luter 1984). This simplicity and ease of interpreta-
tion has held wide appeal (Gotelli 2000,
Houlahan et al. 2007, Winfree and Kremen 2009).
However, the variance ratio cannot disentangle
the timescales at which dynamics occur (Fig. 1),
ultimately hindering possibilities for considering
mechanisms of dynamics.
Here, we develop and apply a new timescale-

specific variance ratio appropriate for terrestrial
grasslands and other systems with shorter, regu-
larly spaced time series. In contrast to timescale-
specific approaches previously used on plankton
data, our techniques provide a formal decompo-
sition by timescale of the classic variance ratio
approach, so that appropriately averaging/sum-
ming the components of the new approach
across timescales recovers the classic non-time-
scale-specific results; one can then quantify the
contributions of timescale bands as well as indi-
vidual timescales. We first develop the theory
that underlies our approach and provides time-
scale-specific measures of community and popu-
lation variability. Second, we apply this theory
to long-term (11–30 yr) records of plant commu-
nity composition at six grasslands across the
United States (Hallett et al. 2014). We address
the fundamental questions of (1) whether
synchrony/compensatory dynamics are time-
scale-dependent phenomena and (2) whether
compensatory dynamics are rare, compared to
synchrony, in grassland systems, as appears true
for plankton systems (Vasseur et al. 2005; 2014;
Keitt and Fischer 2006; Vasseur and Gaedke
2007; Downing et al. 2008; Keitt 2008; Brown
et al. 2016). We aim to demonstrate that our
timescale-specific methods can deepen under-
standing of grassland community dynamics
(Hallett et al. 2014). Finally, we provide a soft-
ware package for the R language to facilitate
adoption of our techniques.

Fig. 1. Introduction to concepts using an idealized
example. Five population time series (a, colors distin-
guish the time series; the black line is the average)
were constructed by summing a sine wave of period
(timescale) 3 yr and amplitude 0.2 (b) with five ran-
domly and independently phase-shifted sine waves of
period 10 yr, amplitude 0.6 (c), and then vertically
shifting each time series to have minimum value 1.
Thus, the time series of panel a were constructed to be
synchronous on the 3-yr timescale and asynchronous
(randomly related) on the 10-yr timescale. However,
the classical variance ratio (Peterson 1975, Schluter
1984) was 1.06, suggesting that the species show nei-
ther compensation nor synchrony across the entire
time series, missing the deliberately constructed time-
scale-specific processes.

 ❖ www.esajournals.org 3 May 2020 ❖ Volume 11(5) ❖ Article e03114

SPECIAL FEATURE: EMPIRICAL PERSPECTIVES FROM MATHEMATICAL ECOLOGY ZHAO ETAL.



THEORY

Community dynamics data are commonly
abundance (e.g., count, density, percent cover, or
biomass) time series xi tð Þ for times t = 1,. . .T for
the taxa i = 1,. . .S comprising a community (e.g.,
all plant species in a quadrat). We denote
li ¼ mean xi tð Þð Þ and mij ¼ cov xi tð Þ; xj tð Þ

� �
as the

means and covariances, respectively, of popula-
tion dynamics through time. Note that
mii ¼ cov xi tð Þ; xi tð Þð Þ is equal to the variance of
xi tð Þ. We denote xtot tð Þ ¼

P
i xi tð Þ as the total pop-

ulation density or biomass time series, and
ltot ¼

P
i li and mtot ¼

P
i;j mij as the mean and

variance, respectively, through time of xtot(t).
We use the square of the coefficient of varia-

tion of xtot(t), CV2
com ¼ mtot=l2tot ¼

P
i;j vij=P

i li
� �2

; to quantify the variability of the
summed community property (Wang and Lor-
eau 2014). If populations were independent, the
covariances mij for i 6¼ j would be 0 and CV2

com
would equal

P
i mii=

P
i li

� �2¼ P
i mii=l

2
tot; which

we denote as CV2
com ip: We refer to CV2

com ip as
the aggregate population dynamical variability
of the system because it represents the degree of
overall community variability that would result
solely from the dynamics of individual taxa, dis-
counting interactions.

The classic variance ratio u ¼ mtot=
P

i mii ¼P
i;j mij=

P
i mii (Schluter 1984) is well-known to

quantify the extent to which population fluctua-
tions of different taxa reinforce each other
(through synchrony of temporal fluctuations,
φ > 1) or cancel (through compensation, φ < 1) in
the community total time series xtot(t). The vari-
ance ratio satisfies CV2

com ¼ uCV2
com ip (theorem

2 of Appendix S1: Section 2; Peterson 1975, Sch-
luter 1984). Thus, values φ > 1 (respectively, <1)
correspond to greater (resp., lesser) community
variability than would be expected if dynamics
of different taxa were independent, reflecting
synchronous (resp., compensatory) dynamics.

Next, we develop timescale-specific statistics
using spectral methods, which are a standard
statistical tool in ecology (Vasseur and Gaedke
2007, Defriez et al. 2016) and other fields. All def-
initions and computational choices about the
basics of power spectra and cospectra are
detailed in Appendix S1: Section 1. The power
spectrum of the time series xi(t), here denoted
sii rð Þ and defined for timescales of oscillation

r ¼ T= T � 1ð Þ;T= T � 2ð Þ; . . .;T=2;T, decomposes
var(xi(t)) by timescale in the sense that sii rð Þ will
tend to be larger for timescales r on which xi(t) is
oscillating strongly. Thus, the power spectrum
provides information on the dominant timescales
of oscillation in xi(t). The power spectrum is a for-
mal decomposition of variance across timescales
because

P
r sii rð Þ ¼ var xi tð Þð Þ (Appendix S1: Sec-

tion 1). The cospectrum sij rð Þ of xi(t) and xj(t)
decomposes cov xi tð Þ; xj tð Þ

� �
by timescales, that is,

sij rð Þ is defined for r ¼ T= T � 1ð Þ;T= T � 2ð Þ; . . .;
T=2;T; such that

P
r sij rð Þ ¼cov xi tð Þ; xj tð Þ

� �

(Appendix S1: Section 1), and sij rð Þ tends to
be larger for timescales on which the two time
series predominately covary (i.e., they are
varying synchronously, with substantial and
largely in-phase periodic components at those
timescales).
Community variability CV2

com ¼ mtot=l2tot
¼ P

i;j mij=l
2
tot is made timescale-specific by replac-

ing the covariances in the numerator with their
timescale decompositions, CV2

com rð Þ ¼ P
i;j sij rð Þ

=l2tot: Thus
P

r CV
2
com rð Þ ¼ CV2

com (theorem 1 in
Appendix S1: Section 2), and CV2

com rð Þ reveals to
what extent fluctuations on each timescale con-
tribute to community variability through time.
Aggregate population variability CV2

com ip ¼P
i mii=l

2
tot is made timescale-specific again by

replacing the variances in the numerator with
their timescale decompositions, CV2

com ip rð Þ ¼P
i sii rð Þ=l2tot: Thus,

P
r CV

2
com ip rð Þ ¼ CV2

com ip
(theorem 1 in Appendix S1: Section 2) and
CV2

com ip rð Þ reveals to what extent fluctuations
on each timescale contribute to aggregate popula-
tion variability.
A timescale-specific variance ratio can be

defined by replacing covariances in the definition
of u by their timescale-specific decompositions,
uts rð Þ ¼ P

i;j sij rð Þ=Pi sii rð Þ: Thus, the time-
scale-specific variance ratio satisfies
CV2

com rð Þ¼uts rð ÞCV2
com ip rð Þ: Values uts rð Þ[ 1

correspond to synchrony at timescale r, and val-
ues uts rð Þ\1 correspond to compensatory
dynamics at r. We then define the quantity
wðrÞ ¼ P

i siiðrÞ=
P

i mii; which represents the rel-
ative amount of variation in populations across
timescales. Because of the normalization in the
denominator of wðrÞ;Pr wðrÞ ¼ 1: We cannot
simply sum utsðrÞ across timescales to recover u.
However,

P
r wðrÞutsðrÞ ¼ u; so u is instead a

weighted average across timescales of utsðrÞ
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(Appendix S1: Section 2). The relationships
between the classic quantities CV2

com, CV
2
com ip,

and u and their timescale-specific extensions are
summarized in Fig. 2, while notation is summa-
rized in Table 1.

Community variability, aggregate population
variability, and variance ratio concepts can also
be defined for any range or set, Ω, of timescales:
CV2

com Xð Þ ¼ P
r2X CV2

com rð Þ; CV2
com ip Xð Þ ¼P

r2X CV2
com ip rð Þ; and uts Xð Þ ¼ P

r2X uts rð Þ�

w rð ÞÞ=Pr2X wðrÞ: It can then be shown
(Appendix S1: Section 2) that

CV2
com Xð Þ ¼ CV2

com ip Xð Þuts Xð Þ: (1)

Given a threshold timescale rTH, we define
XS ¼ r : r\rTHf g as short timescales and
XL ¼ r : r�rTHf g as long timescales relative to
the threshold. Equation (1) for X ¼ XL and
X ¼ XS can then be used to compare the

effects of synchrony or compensatory dynam-
ics on population and community variability
at long vs. short timescales. We note that

CV2
com ¼ CV2

com XLð Þ þ CV2
com XSð Þ;

CV2
com ip ¼ CV2

com ip XLð Þ þ CV2
com ip XSð Þ;

u ¼ uts XLð Þ �Pr� rTH
w rð Þ þ uts XSð Þ �Pr\rTH

wðrÞ:

To illustrate, we apply the theory to the artifi-
cial example of Fig. 1. The timescale-specific
variance ratio uts rð Þ was greater than one for
timescale r = 3 yr and less than one for
r = 10 yr, capturing the deliberately constructed
synchronous and compensatory processes at
these timescales (Fig. 3a). The non-timescale-
specific variance ratio φ = 1.064, being a
weighted average of uts rð Þ over timescales, con-
flated the distinct processes and thereby

Fig. 2. Expressions of original (a) and timescale-specific (b) community variability, aggregate population vari-
ability, and the variance ratio, as well as the relationships between these quantities. A summary of notation can
be found in Table 1.
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suggested neither synchronous nor compen-
satory dynamics. CV2

com ip rð Þ was relatively
small for r = 3 and relatively large for r = 10
(Fig. 3b), reflecting the use of small- and large-
magnitude sinusoids, respectively, on these time-
scales (Fig. 1b, c). The r = 3 oscillations had
small magnitude, but were synchronous,
whereas the r = 10 oscillations had large magni-
tude, but were compensatory; hence, CV2

com rð Þ
had similar values for r = 3 and r = 10 (Fig. 3c).
Community variability at the two timescales was
due to weak synchronous oscillations for r = 3
and strong asynchronous oscillations for r = 10
(Fig. 3d); the distinct origins of community vari-
ability were revealed by the timescale-specific
analysis but not by the classic approach.

It may at first appear as though timescale-speci-
fic results could be obtained without using Four-
ier methods by first performing a series of moving
average operations on the data, one operation for
each desired timescale, and then calculating the
classic variance ratio for each moving-averaged
dataset. The analysis of each moving-averaged

dataset may appear to provide information on
synchronous/compensatory dynamics on the
timescale of averaging. However, this is incorrect,
and Fourier analysis is instead the standard
approach for timescale-specific analyses. The
variance ratio computed on data sampled once
per time interval, s (or sampled more frequently
but averaged), does not assess whether dynamics
are synchronous or compensatory on the time-
scale s. Rather, it assesses whether dynamics are
synchronous or compensatory on average across
all timescales 2s and longer (these are the time-
scales that can be assessed with a sampling inter-
val of s). In other words, the standard variance
ratio conflates all available timescales, rather than
providing information solely about the timescale
of sampling or averaging. Fourier analysis,
invented some 200 yr ago, is the most standard
approach used for the purpose of decomposing
(co)variance by timescale and has been used
widely for that purpose for decades.

METHODS

We applied our timescale-specific variance
ratio to six long-term grassland datasets from
sites throughout the United States (Table S1; see
Hallett et al. 2014 for detailed descriptions). Plant
abundances were measured either as biomass or
as percent cover. In percent-cover cases, summed
values could exceed 100% due to vertically over-
lapping canopies. All sites were sampled annu-
ally (minimum 11 consecutive years) and were
spatially replicated (at least 13 plots/site). For
sites carrying out long-term experiments, we
only used data from unmanipulated control
plots. For all sites, methods for data collection
were constant over time. One plot was omitted
from the Jornada Basin Long-Term Ecological
Research (LTER) site because it was an extreme
outlier in community variance, leaving 47 plots
from that site.
For each plot in each site, we calculated the

classic variance ratio, φ; community variability,
CV2

com; and aggregate population variability,
CV2

com ip. This initial part of our analysis is a
replication of work of Hallett et al. (2014). We
also computed our new timescale-specific mea-
sures: the timescale-specific variance ratio,
uts rð Þ; the power measure, w rð Þ; timescale-
specific community variability, CV2

com rð Þ;

Table 1. Description of symbols used in this study.

Symbol Description

CV2
com Community variability, quantifying the

variability of the summed community
property

CV2
com ip Aggregate population variability, which equals

the community variability when the
populations are independent.

φ Variance ratio, which is CV2
com=CV

2
com ip

CV2
com rð Þ Timescale-specific community variability on

timescale r
CV2

com ip rð Þ Timescale-specific aggregate population
variability on timescale r

uts rð Þ Timescale-specific variance ratio on
timescale r

xi tð Þ Time series for time t for taxon i
li Average of time series for taxon i through

time, that is, mean xi tð Þð Þ
mii Variance of time series for taxon i, that is,

var xi tð Þð Þ
mij Covariance between time series for taxa i and

j, that is, cov xi tð Þ; xj tð Þ
� �

xtot Total population density or biomass time
series, that is,

P
i xi tð Þ

ltot Average of the total population density or
biomass time series through time

mtot Variance of the total population density or
biomass time series

sii rð Þ Power spectrum of xi tð Þ on timescale r
sij rð Þ Cospectrum of xi tð Þ and xj tð Þ on timescale r
w rð Þ Power measure, which is

P
i sii rð Þ=Pi mii
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timescale-specific aggregate population variabil-
ity, CV2

com ip rð Þ; and the band-aggregated quan-
tities CV2

com XSð Þ, CV2
com XLð Þ, CV2

com ip XSð Þ,
CV2

com ip XLð Þ, uts XSð Þ, and uts XLð Þ. Sheppard
et al. (2016) used the threshold rTH = 4 yr
between long and short timescales because it cor-
responds to a frequency (1 cycle every four
years) of exactly half the Nyquist frequency (the
maximum rate at which periodic components of
the signal can be assessed, which is 1 cycle every

two years for our annual data) and because it is
the boundary between persistent and anti-persis-
tent dynamics (successive values are more simi-
lar or dissimilar, respectively) in Fourier
components, measured with lag-1 autocorrela-
tion. We use the same threshold. The Fourier
quantities sij(r) that underlie all of our timescale-
specific measures, when not averaged across
timescales, are highly variable, that is, plots of
these quantities against timescale are “spiky”

Fig. 3. Application of our theory to the artificial time series of Fig. 1. See text of the Theory section for interpre-
tations. Panels (a–c) show the timescale-specific variance ratio uts rð Þ, aggregate population variability
CV2

com ip rð Þ, and community variability CV2
com rð Þ. Timescales less than the Nyquist timescale (gray background)

are symmetric to timescales greater than the Nyquist timescale (white background); we present both to reflect
the underlying computation of non-timescale-specific quantities (text near top of a–c) as sums or averages across
all timescales, both above and below the Nyquist timescale (Theory); but conceptually, we focus on the timescales
greater than the Nyquist timescale. The horizontal dashed line (a) indicates the boundary between synchronous
and compensatory dynamics for each timescale. Panel (d) compares CV2

com rð Þ to CV2
com ip rð Þ for the period-3

(square) and period-10 (circle) oscillations; the 1:1 line separates synchronous from compensatory dynamics. For
simplicity, the example used sums of sinusoids, which oscillate only at discrete timescales, explaining why plot-
ted quantities are 0 (CV2

com ip rð Þ,CV2
com rð Þ) or undefined (uts rð Þ) except at the timescales of oscillation. Real eco-

logical signals are broadband and should typically yield plots that are well-defined and nonzero at all timescales.
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due to sampling variation. Averaging across
timescales is the standard statistical approach for
ameliorating this property (Brillinger 2001). We
therefore focus our interpretations on compar-
isons between the long- and short-timescale
bands we have defined.

To test whether short or long timescales tended
to contribute more to aggregate population vari-
ability, we compared the average of CV2

com ip rð Þ
across short timescales (<4 yr) and long time-
scales (≥4 yr) for each plot at each site. These
quantities are conceptually similar to
CV2

com ip XSð Þ and CV2
com ip XLð Þ, but are aver-

ages of CV2
com ip rð Þ across short and long time-

scales, respectively, instead of sums. This
facilitates comparisons between these quantities:
Direct comparisons between CV2

com ip XSð Þ and
CV2

com ip XLð Þ would be complicated by the fact
that the sets XS and XL can have different num-
bers of timescales in them, in a way that depends
on data time series length. Comparing the aver-
age quantities for a single plot indicated whether
short or long timescales contributed more, per
timescale, to aggregate population variability for
that plot. Across all the plots in a site, we con-
ducted a paired t-test of the significance of the
difference between timescales for the site as a
whole. If plots within a site can be regarded as
independent replicates, P-value results of these
tests have the usual probabilistic interpretation.
If spatial autocorrelation or another factor means
that plots within a site cannot be regarded as
independent, then these P-value results should
be interpreted as descriptive statistics, describing
the strength of the difference between two paired
distributions of values relative to the variation
within the distributions. As such, we will refer to
these as nominal P-values.

We used a similar approach to test whether
short or long timescales tended to contribute
more to community variability. We compared the
averages of CV2

com rð Þ across short and long time-
scales; these quantities represent the average con-
tributions of a short or long timescale to
community variability. Paired t-tests were again
used to produce nominal P-values.

To test whether the degree of synchrony or
compensation among populations differed by
timescale, we compared uts XSð Þ and uts XLð Þ. We
again used paired t-tests and nominal P-values.
These quantities reflect the extent to which either

the average or the total, across the timescale
band, of aggregate population variability,
CV2

com ip rð Þ, explains the average or the total
across the band of community variability,
CV2

com rð Þ.
We also tested whether the averages of

CV2
com ip rð Þ across short timescales and long

timescales differed significantly from each other
for each plot, individually, using a randomiza-
tion scheme; likewise, we tested whether the
averages of CV2

com rð Þ across short and long time-
scales differed significantly and whether uts XSð Þ
and uts XLð Þ differed significantly, for individual
plots. We explain the randomization procedure
for CV2

com ip rð Þ, the other two applications being
similar. Putting species abundance measures xi(t)
into a matrix with rows indexed by i and col-
umns indexed by t, we randomly permuted col-
umns of the matrix 1000 times and computed the
averages of CV2

com ip rð Þ across short and long
timescales for each randomized matrix. These
randomizations will have exactly the same non-
timescale-specific values CV2

com ip, CV
2
com, and φ

as the original data, but will have short- and
long-timescale averages that differ from each
other only due to sampling variation; so they
represent a null hypothesis with no timescale
structure in CV2

com ip. So the difference between
the short- and long-timescale averages was com-
puted for data and compared to the distribution
of values for the same statistic on randomiza-
tions. If the value of the statistic for data was
greater than a fraction 1 � P/2 or less than a frac-
tion P/2 of values of the statistic for randomiza-
tions, short- and long-timescale averages of
CV2

com ip rð Þ were considered significantly differ-
ent at confidence level 1 � P.
Computations were done in R. All methods

are coded into a new R package called tsvr (see
Data Availability).

RESULTS

Overall patterns of variability without yet
accounting for timescales
Most plots exhibited compensatory dynamics

when examined in aggregate across all time-
scales, although the strength of compensation
varied across sites (Hallett et al. 2014). This pro-
vides an initial answer to question two from the
Introduction, from a non-timescale-specific
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viewpoint (but see below for a timescale-specific
viewpoint): Compensatory dynamics appear to
be more common in our grasslands than in
plankton systems. Community variability CV2

com
varied widely, with a minimum observed plot-
level value of 0.01 and a maximum of 1.50. Popu-
lation variability CV2

com ip exhibited a similar
magnitude of variability, ranging from 0.04 to
1.51. Classic variance ratios φ varied from highly
compensatory to highly synchronous, that is,
from 0.08 to 1.98. However, φ was less than one
in 72.7% of our 150 plots. This differs signifi-
cantly from 50% (nominal P < 0.001, two-tailed
binomial test).

Timescale-specific patterns of variability
Many plots exhibited marked differences in

variability and variance ratios between short and
long timescales. To facilitate understanding of
results, we first demonstrate this effect with data
from one example plot at the Jasper Ridge Bio-
logical Preserve (JRG), before later presenting all
results. Using the classic approach, dynamics at
this plot would be considered compensatory:
The variance ratio was 0.457 (<1), and corre-
spondingly, CV2

com (0.047) was less than
CV2

com ip (0.103). However, when we decom-
posed variability by timescale bands, the short-
and long-timescale bands showed opposite pat-
terns (Fig. 4). The weighted average of uts rð Þ
across short timescales was >1, indicating syn-
chronous dynamics, but the weighted average
across long timescales was <1, indicating com-
pensatory dynamics (Fig. 4a). Correspondingly,
the average of CV2

com rð Þ was slightly higher than
the average of CV2

com ip rð Þ when these averages
were computed across short timescales, but was
substantially less when the averages were across
long timescales (Fig. 4b–d).

We applied the same approach to all 150 plots
in the six sites (Fig. 5), providing a picture of
how a timescale approach alters our understand-
ing of compensatory dynamics in these systems
(question one from the Introduction). Our data
showed average (site level) greater aggregate
population variability at long timescales than at
short timescales at all sites (Fig. 5g–l), and like-
wise for community variability (Fig. 5m–r),
except for the Kellogg Biological Station LTER
(KBS), where the average CV2

com rð Þ did not differ
between short and long timescales at the site

level (Fig. 4n). Thus, long timescales were the
primary driver of population variability at all
sites and of community variability in five of our
six sites; this was not surprising given prior litera-
ture on the commonness of temporal autocorrela-
tion in population dynamics (Halley 1996).
However, the degree of synchrony and compen-
sation among species differed substantially by
timescale, at the whole-site level, at some but not
all sites. Short timescales had larger weighted-av-
erage values of uts rð Þ than long timescales for
Jasper Ridge (JRG) and Kellogg Biological Station
(KBS; Fig. 5a, b; paired t-test, nominal P < 0.001),
but the weighted averages of uts rð Þ over short
and long timescales were not significantly differ-
ent, at the site level, at the remaining four sites
(Fig. 5c–f; paired t-test, nominal P > 0.5). At both
JRG and KBS, the weighted-average values of
uts rð Þ tended to be <1 over both short and long
timescales, indicating some compensation
occurred across all timescales, but compensatory
dynamics were stronger over long timescales.
While Jasper Ridge and Kellogg Biological Sta-

tion exhibited similar timescale-specific patterns
of compensatory dynamics, timescale-specific
patterns of community variability differed
between these sites for reasons our approach
reveals. At JRG, population variability was much
greater on long than on short timescales (Fig. 5g).
Community variability was also higher on long
timescales (Fig. 5m), but to a lesser degree than
population variability, because species dynamics
were more compensatory on long than on short
timescales (Fig. 5a). At KBS, population variabil-
ity was also higher on long than on short time-
scales, but less markedly so than for JRG
(Fig. 5h). Because dynamics were again more
compensatory on long than on short timescales
for KBS (Fig. 5b), community variability was
similar on short and long timescales (Fig. 5n).
Thus, differences across timescales in population
variability existed at both JRG and KBS, but
opposing differences across timescales in the
strength of compensatory dynamics were enough
to eliminate timescale differences in community
variability for KBS, but only to reduce them rela-
tive to population-level differences for JRG.
On average, the remaining four sites

(Hayes, HAY; Jornada, JRN; Konza, KNZ; and
Sevilleta, SEV) demonstrated similar strengths
of compensatory dynamics across timescales
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(Fig. 5c–f). For these sites, long timescales con-
tributed more to both population and commu-
nity variability, and to about the same extent
(compare Fig. 5i, o for HAY, Fig. 5j, p for
JRN, Fig. 5k, q for KNZ, and Fig. 5i, r for
SEV). However, for each of these four sites
there were plots that were compensatory on
short timescales (short-timescale weighted
average of uts rð Þ < 1) and synchronous on

long timescales (long-timescale weighted aver-
age of uts rð Þ > 1), and other plots which
showed the reverse pattern; and some of these
differences were significant at the plot level
(Fig. 5a–f, black lines). For JRG and JRN (but
not for the other sites), there were substan-
tially more significant plot-level differences
between uts XSð Þ and uts XLð Þ than would be
expected from a type I error rate.

Fig. 4. Results for an example plot at the Jasper Ridge Biological Preserve (JRG), which shows a similar pattern
to the artificial data of Fig. 1 (see Fig. 3). The classic, non-timescale-specific approach (text at top of a–c) suggests
compensatory dynamics, and hence CV2

com is less than CV2
com ip. But decomposing variability by timescale bands

indicated contrasting patterns at short and long timescales: The weighted average of uts rð Þ was >1 across short
timescales (a), so the average of CV2

com rð Þ (c) was slightly greater than the average of CV2
com ip rð Þ (b) across

short timescales; whereas there reverse pattern held for long timescales. Differences between short and long time-
scales in panels a and b were significant, P � 0, to within the precision available from 1000 randomizations. In
this figure and in Fig. 5, lines connecting timescale-specific quantities on plots will be rendered in black to indi-
cate a significant difference (P < 0.05) between short and long timescales at the plot level, while gray lines indi-
cates nonsignificant differences. Panel d compares the averages of CV2

com rð Þ and CV2
com ip rð Þ across short

(square) and long (circle) timescales. See text of the Results section for further interpretation. The horizontal solid
line in panel a shows the value of the classic variance ratio.
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Returning to question two from the Introduc-
tion, compensatory dynamics were not only more
common in our grasslands than has been
reported for plankton systems; for some time-
scales and sites, compensatory dynamics were
ubiquitous: long timescales for JRG and KBS
(Fig. 5a, b).

Full spectral decompositions of all quantities
are in Appendix S1: Figs. S1–S6. The distribu-
tions, across plots, of all spectral quantities are
given for each site in Appendix S1: Fig. S7. Com-
parisons between weighted-average uts rð Þ and
the classic variance ratio φ are made for each site
in Appendix S1: Fig. S8.

DISCUSSION

Understanding the links between diversity and
stability and the mechanisms that promote them
is among the long-standing goals of ecology as a
field (McNaughton 1977, Tilman et al. 1998, Con-
nell and Ghedini 2015). Although timescale
specificity in population dynamics is well-estab-
lished (Turchin 2003, Defriez et al. 2016, Shep-
pard et al. 2016), the degree to which community
dynamics exhibit timescale specificity is less
explored, particularly in terrestrial ecosystems.
Timescale specificity in synchrony and compen-
satory dynamics has been demonstrated in natu-
ral and experimental freshwater plankton
communities (Vasseur et al. 2005; 2014; Keitt and
Fischer 2006; Vasseur and Gaedke 2007; Down-
ing et al. 2008; Keitt 2008; Brown et al. 2016), but
methods had not previously been adapted to the
shorter, annually sampled time series common in
terrestrial ecosystems such as grasslands. We
developed and applied new methods for the
timescale decomposition of the variance ratio,
and of population and community variability.
Our approach demonstrated the site-level value
of considering timescales for two of the six sites
we examined, and individual plots in other sites
also appeared to show timescale structure in
compensatory/synchronous dynamics. Compen-
satory dynamics were more common in our
grasslands than has been reported for plankton
systems (Vasseur et al. 2014, Brown et al. 2016),
and were ubiquitous on long timescales in some
sites.

In contrast to the methods which have been
used to study plankton communities, our

methods offer a formal decomposition of the
classical variance ratio. The variance ratio and
the community and population variability statis-
tics CV2

com and CV2
com ip can be recovered exactly

from our timescale-specific quantities by sum-
ming or averaging appropriately over timescales.
Thus, our approach formally elaborates the clas-
sical approach.
In developing our theory, we focused on the

classical variance ratio (Peterson 1975, Schluter
1984). However, a distinct variance ratio of Lor-
eau and de Mazancourt (2008),
uðmÞ ¼ P

i;j mij=
P

i
ffiffiffiffiffi
mii

p� �2
; has been proposed and

has become popular. This alternative approach
also uses an alternative to our CV2

com ip rð Þ,
which we denote CV2

pop ¼ P
i

ffiffiffiffiffi
mii

p� �2
=
P

i li
� �2

(Loreau and de Mazancourt 2008). We attempted
a timescale-specific extension of the Loreau-de
Mazancourt approach in Appendix S1: Section 3.
Our derivations may facilitate future theory, but
are so far not satisfactory for application to data
because CV2

pop does not admit a straightforward
timescale decomposition.
Although some empirical evidence exists for

greater community variability on long time-
scales (Bengtsson et al. 1997), our study appears
to be the first observation of this phenomenon
in grassland communities. Bengtsson et al.
(1997) hypothesized that bird community vari-
ability was derived from increased population
and environmental variability with time, specifi-
cally long-term trends in species abundances
and temporal heterogeneity in habitat due to
succession. In our study, a large proportion of
population and community variability was con-
tributed by fluctuations on long timescales
(>4 yr). Yet unlike Bengtsson et al. (1997), our
grassland communities were not obviously suc-
cessional. Instead, a potential mechanism driv-
ing variability on long timescales in our systems
may be long-term fluctuations, associated with
long-timescale climatic oscillations, in the envi-
ronmental resources (e.g., water and nutrients)
that affect plant productivity. For example, the
Pacific Decadal Oscillation (PDO) and the Atlan-
tic Multidecadal Oscillation (AMO) contribute
to long-term patterns of drought over the Uni-
ted States (McCabe et al. 2004), and the El
Ni~no–Southern Oscillation (ENSO) can also be
related to drought or extreme rainfall (Yoon
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Fig. 5. Timescale-specific variance ratio, aggregate population variability, and community variability for all
plots in each site. Panels parallel those in Figure 4 and show weighted averages of uts rð Þ (a–f) or averages of
CV2

com ip rð Þ (g–l) or CV2
com rð Þ (m–r) across short (blue) or long (red) timescales. Each pair of points on a panel is

one plot. As in Fig. 4, black lines connecting timescale-specific quantities indicate a significance difference
between the quantities (P < 0.05). Stars in each panel denote nominally significant site-level differences between
short or long timescales (paired t-test): ***P < 0.001; **P < 0.01; NS: not nominally significant. The box–whisker
plots in the first column of panels show distributions across plots of the classic (non-timescale-specific) variance
ratio. Panels (s–x) show the relationship between the average of CV2

com rð Þ and the average of CV2
com ip rð Þ across

short (blue) and long (red) timescales. Site abbreviations are JRG, Jasper Ridge Biological Preserve; KBS, Kellogg
Biological Station Long-Term Ecological Research (LTER) site; HAY, Hayes, Kansas; JRN, Jornada Basin LTER;
KNZ, Konza Prairie LTER; SEV, Sevilleta LTER.
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et al. 2015). Long-timescale nitrogen periodicity
of 8–9 yr driven by legume cycles has also been
reported (Herben et al. 2017). Long-term
resource variation likely propagates through
ecosystems, ultimately affecting aggregate com-
munity properties in ways that depend on spe-
cies interactions and shared responses to
drivers. For example, plant community variabil-
ity at Jasper Ridge showed a clear spectral peak
at a timescale of ~10 yr. In contrast, no studies
have reported greater community variability at
short compared to long timescales. We speculate
that community variability may generally be
greater on long (>4 yr) than on shorter time-
scales (<4 yr).

Relatedly, our techniques have the possible
limitation of not distinguishing trends from long-
term oscillations in their contributions to com-
munity dynamics. This weakness should be
addressed, if feasible, in future work, but the
weakness is also common to prior analyses using
the variance ratio and is probably an unavoid-
able consequence of finite-duration data. A
recent study sought to separate the effects of
trends and fluctuations in dynamics using
detrending and a moving window approach
(Lep�s et al. 2019). However, aside from gathering
more data, periodic fluctuations of period longer
than about twice the duration of the data essen-
tially cannot be distinguished from trends, for
the simple reason that a very long-timescale peri-
odic fluctuation can present as exactly the same
pattern in a finite dataset as does a trend. The
techniques of Lep�s et al. (2019) effectively sepa-
rate the contributions to community dynamics of
both possible trends and very long-timescale
oscillatory phenomena from the contributions
due to oscillatory phenomena happening on
timescales less than the duration of the data.
Apparent long-term trends (which may also be
long-timescale oscillations) are present even in
some very long datasets (e.g., Silwood Park plant
data; see Brown 1991). The argument has mathe-
matical merit that true trends, that is, trends
which continue forever, cannot occur in real
ecosystems because populations and other eco-
logical quantities cannot increase or decrease at
the same rate forever. Our decision to not carry
out detrending or other filtering procedures on
our data prior to analysis was based on the fact
that the variance ratio has traditionally been

computed on non-detrended data, and our goal
was to provide an extension of the method as it
is commonly applied.
Decomposing community dynamics by time-

scale may assist in detecting the mechanisms for,
and implications of, compensatory dynamics.
Compensatory dynamics are promoted by at
least two factors: competitive interactions and
asynchronous responses to environmental
change (Houlahan et al. 2007, Loreau and de
Mazancourt 2013). The latter mechanism is sup-
ported by several prior studies in grasslands. For
example, Hobbs et al. (2007) reported that differ-
ential responses of plant species at Jasper Ridge
to a period of prolonged below-average rainfall
resulted in functional compensation among spe-
cies. In systems for which the consequential envi-
ronmental fluctuations are connected with long-
timescale environmental oscillations such as the
Pacific decadal oscillation, the timescale signa-
ture of compensatory dynamics may help illumi-
nate if the mechanism is competitive interactions
or asynchronous response to environmental fluc-
tuations.
Comparisons between our results for terres-

trial grasslands and prior results with freshwater
plankton suggest both similarities and differ-
ences. First, our finding of stronger compen-
satory dynamics at some timescales than others
is broadly consistent with previous findings in
plankton systems that synchrony vs. compen-
satory dynamics depend on timescale (Keitt and
Fischer 2006, Downing et al. 2008, Vasseur et al.
2014, Brown et al. 2016). Differences by timescale
were, however, less profound for grasslands than
for the prior plankton studies: No grassland, at
the site level, demonstrated a shift from clear
compensatory dynamics on one timescale band
to clear synchrony on another band, as was
observed in both natural plankton populations
(Vasseur et al. 2005) and experimental meso-
cosms (Downing et al. 2008). Finally, we did not
find strong evidence of synchrony at the site level
in any of our systems, unlike the general conclu-
sion that synchronous dynamics prevailed in
zooplankton in 58 lake datasets (Vasseur et al.
2014).
What level of synchrony or compensation

should we expect as a norm in terrestrial vs.
aquatic systems? Some have argued that we
should expect overall synchronous dynamics in
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communities responding to variable resources,
particularly limiting resources (Loreau and de
Mazancourt 2008). In contrast, others have sug-
gested that compensatory dynamics may be
the norm, especially when space is limiting or
zero-sum dynamics are at play (Houlahan
et al. 2007). We speculate that space limitation
may shape terrestrial more than aquatic com-
munities, which would support the occasion-
ally strong compensatory but never strong
synchronous dynamics that characterized our
grassland datasets. Directional species turnover
in combination with space limitation may
enhance the long-term signal of compensatory
dynamics in our grassland sites, as invasions
often drive a decline in resident species
(Py�sek et al. 2012). We expect this pattern is
common to terrestrial systems, with the excep-
tion of early successional systems (Lep�s et al.
2019). Finally, differences in diversity may
have contributed to the more muted syn-
chronous dynamics in terrestrial grassland
than freshwater zooplankton communities.
High species richness in grasslands may have
buffered against strongly synchronous dynam-
ics, as the presence of more species increases
the likelihood that some will have differential
responses to environmental fluctuations and
thus compensatory dynamics (Ives and
Hughes 2002).

Our interpretations for grasslands have
focused on average tendencies within a particular
site, either timescale specificity in the strength of
compensatory dynamics (Jasper Ridge, Kellogg
Biological Station) or lack thereof (Hayes, Jor-
nada, Konza, and Sevilleta). However, variability
across plots within a site was substantial, every
site had some plots that were compensatory on
one of the timescale bands we considered and
synchronous on the other, and one site (JRN) had
a large fraction of plots exhibiting significant dif-
ferences between uts XSð Þ and uts XLð Þ (Fig. 5).
When the variability we observed across plots
within a site eclipses sampling variation, then
timescale-specific analysis may help reveal, in
future work, plot-to-plot heterogeneity in the
nature and mechanisms of compensatory
dynamics. Exploring potential plot-to-plot varia-
tion in the nature of community dynamics would
likely have to make further use of our random-
ization-based method to assess the statistical

significance of timescale heterogeneities in com-
pensatory dynamics for individual plots. Study-
ing plot-to-plot variation may provide statistical
power for illuminating causes of compensatory
dynamics that is lacking when making compar-
isons across whole sites. This can be useful future
work.
Timescale dependency in the presence and

magnitude of compensatory dynamics may have
implications for how ecologists approach and
study ecosystems more generally. For example,
synthesis efforts that collate patterns of syn-
chrony and compensation should likely consider
length of time series used for such efforts or
should use methods that explicitly take timescale
into account. Additionally, do results drawn
from short-term observations of communities fol-
lowing manipulation change when observed for
longer periods?
To facilitate adoption of our timescale-specific

approach, we developed an R package, tsvr, on
CRAN. Our timescale-specific variance ratio
should be particularly attractive for certain
ecosystem types and applications. For example,
while wavelet methods for quantifying syn-
chrony in ecological communities are increasing
in popularity and provide flexibility (Vasseur
et al. 2005; 2014; Keitt and Fischer 2006; Vasseur
and Gaedke 2007; Brown et al. 2016; Sheppard
et al. 2016), these methods require long time ser-
ies. Our methods can be used on shorter time ser-
ies (e.g., >10 equally spaced time points), though
we remind the reader that Fourier analysis only
provides information on Nyquist timescales;
inferences on timescales longer than the data are
not possible. We hope our results and package
will facilitate further illumination of compen-
satory vs. synchronous dynamics in ecological
communities.
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