98 research outputs found

    MHD equilibrium properties of tokamak fusion reactor designs

    Get PDF
    The equilibrium properties of several Tokamak Reactor Designs are analyzed and compared for varying pressure and current profiles using the Princeton Equilibrium Code. It is found that the UWMAK configuration has a broader range of equilibria than the Princeton Reference Design configuration, but that the safety factor on axis is less than unity for peaked current distributions. The Argonne Experimental Power Reactor has a satisfactory range of equilibria, but a means of limiting or diverting the plasma has not yet been proposed, and this may substantially change the results obtained. (auth

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Charged-particle nuclear modification factors in PbPb and pPb collisions at √=sNN=5.02 TeV

    Get PDF
    The spectra of charged particles produced within the pseudorapidity window |η| < 1 at √ sNN = 5.02 TeV are measured using 404 µb −1 of PbPb and 27.4 pb−1 of pp data collected by the CMS detector at the LHC in 2015. The spectra are presented over the transverse momentum ranges spanning 0.5 < pT < 400 GeV in pp and 0.7 < pT < 400 GeV in PbPb collisions. The corresponding nuclear modification factor, RAA, is measured in bins of collision centrality. The RAA in the 5% most central collisions shows a maximal suppression by a factor of 7–8 in the pT region of 6–9 GeV. This dip is followed by an increase, which continues up to the highest pT measured, and approaches unity in the vicinity of pT = 200 GeV. The RAA is compared to theoretical predictions and earlier experimental results at lower collision energies. The newly measured pp spectrum is combined with the pPb spectrum previously published by the CMS collaboration to construct the pPb nuclear modification factor, RpA, up to 120 GeV. For pT > 20 GeV, RpA exhibits weak momentum dependence and shows a moderate enhancement above unity

    Simulation of a regenerative MW FEL amplifier

    Get PDF
    Both oscillator and regenerative amplifier configurations are being studied to optimize the design of a MW-class FEL. The regenerative amplifier uses a longer undulator and relies on higher extraction efficiency to achieve high average power, whereas the oscillator is a more compact overall design requiring the transport of the high energy electron beam around bends for energy recovery. Using parameters extrapolated from the I kW LANL regenerative amplifier, simulations study the feasibility of achieving I MW average power.Los Alamos National Laborator
    corecore