20 research outputs found

    Quenched divergences in the deconfined phase of SU(2) gauge theory

    Get PDF
    The spectrum of the overlap Dirac operator in the deconfined phase of quenched gauge theory is known to have three parts: exact zeros arising from topology, small nonzero eigenvalues that result in a non-zero chiral condensate, and the dense bulk of the spectrum, which is separated from the small eigenvalues by a gap. In this paper, we focus on the small nonzero eigenvalues in an SU(2) gauge field background at β=2.4\beta=2.4 and NT=4N_T=4. This low-lying spectrum is computed on four different spatial lattices (12312^3, 14314^3, 16316^3, and 18318^3). As the volume increases, the small eigenvalues become increasingly concentrated near zero in such a way as to strongly suggest that the infinite volume condensate diverges.Comment: 12 pages, 3 figures, version to appear in Physical Review

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for the associated production of the Higgs boson with a top-quark pair

    Get PDF
    A search for the standard model Higgs boson produced in association with a top-quark pair t t ¯ H (tt¯H) is presented, using data samples corresponding to integrated luminosities of up to 5.1 fb −1 and 19.7 fb −1 collected in pp collisions at center-of-mass energies of 7 TeV and 8 TeV respectively. The search is based on the following signatures of the Higgs boson decay: H → hadrons, H → photons, and H → leptons. The results are characterized by an observed t t ¯ H tt¯H signal strength relative to the standard model cross section, μ = σ/σ SM ,under the assumption that the Higgs boson decays as expected in the standard model. The best fit value is μ = 2.8 ± 1.0 for a Higgs boson mass of 125.6 GeV

    Measurement of prompt Jψ\psi pair production in pp collisions at \sqrt s = 7 Tev

    Get PDF
    Production of prompt J/ ψ meson pairs in proton-proton collisions at s s√ = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 fb −1 . The two J/ ψ mesons are fully reconstructed via their decays into μ + μ − pairs. This observation provides for the first time access to the high-transverse-momentum region of J/ ψ pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/ ψ transverse momentum ( p T J/ ψ ) and rapidity (| y J/ ψ |): | y J/ ψ | 6.5 GeV/ c ; 1.2 4.5 GeV/ c . The total cross section, assuming unpolarized prompt J/ ψ pair production is 1.49 ± 0.07 (stat) ±0.13 (syst) nb. Different assumptions about the J/ ψ polarization imply modifications to the cross section ranging from −31% to +27%

    Measurements of the t(t)Overbar charge asymmetry using the dilepton decay channel in pp collisions at root s=7 TeV

    Get PDF
    The tt¯ charge asymmetry in proton-proton collisions at s√ = 7 TeV is measured using the dilepton decay channel (ee, e μ , or μμ ). The data correspond to a total integrated luminosity of 5.0 fb −1 , collected by the CMS experiment at the LHC. The tt and lepton charge asymmetries, defined as the differences in absolute values of the rapidities between the reconstructed top quarks and antiquarks and of the pseudorapidities between the positive and negative leptons, respectively, are measured to be A C = −0 . 010 ± 0 . 017 (stat . ) ± 0 . 008 (syst . ) and AlepC = 0 . 009 ± 0 . 010 (stat . ) ± 0 . 006 (syst . ). The lepton charge asymmetry is also measured as a function of the invariant mass, rapidity, and transverse momentum of the tt¯ system. All measurements are consistent with the expectations of the standard model

    Haplotype inference constrained by plausible haplotype data

    No full text
    The haplotype inference problem (HIP) asks to find a set of haplotypes which resolve a given set of genotypes. This problem is of enormous importance in many practical fields, such as the investigation of diseases, or other types of genetic mutations. In order to find the haplotypes that are as close as possible to the real set of haplotypes that comprise the genotypes, two models have been suggested which by now have become widely accepted: The perfect phylogeny model and the pure parsimony model. All known algorithms up till now for the above problem may find haplotypes that are not necessarily plausible, i.e. very rare haplotypes or haplotypes that were never observed in the population. In order to overcome this disadvantage we study in this paper, for the first time, a new constrained version of HIP under the above mentioned models. In this new version, a pool of plausible haplotypes Ĥ is given together with the set of genotypes G, and the goal is to find a subset H ⊆ Ĥ that resolves G. For the constrained perfect phylogeny haplotyping (CPPH) problem we provide initial insights and polynomial-time algorithms for some restricted cases that help understanding the complexity of that problem. We also prove that the constrained parsimony haplotyping (CPH) problem is fixed parameter tractable by providing a parameterized algorithm that applies an interesting dynamic programming technique for solving the problem

    Search for heavy neutrinos or third-generation leptoquarks in final states with two hadronically decaying tau leptons and two jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore