2,189 research outputs found

    Every 33-connected, essentially 1111-connected line graph is hamiltonian

    Get PDF
    Thomassen conjectured that every 44-connected line graph is hamiltonian. A vertex cut XX of GG is essential if GXG-X has at least two nontrivial components. We prove that every 33-connected, essentially 1111-connected line graph is hamiltonian. Using Ryjáček's line graph closure, it follows that every 33-connected, essentially 1111-connected claw-free graph is hamiltonian

    SUSY QCD impact on top-pair production associated with a Z0Z^0-boson at a photon-photon collider

    Full text link
    The top-pair production in association with a Z0Z^0-boson at a photon-photon collider is an important process in probing the coupling between top-quarks and vector boson and discovering the signature of possible new physics. We describe the impact of the complete supersymmetric QCD(SQCD) next-to-leading order(NLO) radiative corrections on this process at a polarized or unpolarized photon collider, and make a comparison between the effects of the SQCD and the standard model(SM) QCD. We investigate the dependence of the lowest-order(LO) and QCD NLO corrected cross sections in both the SM and minimal supersymmetric standard model(MSSM) on colliding energy s\sqrt{s} in different polarized photon collision modes. The LO, SM NLO and SQCD NLO corrected distributions of the invariant mass of ttˉt\bar t-pair and the transverse momenta of final Z0Z^0-boson are presented. Our numerical results show that the pure SQCD effects in \ggttz process can be more significant in the +++ + polarized photon collision mode than in other collision modes, and the relative SQCD radiative correction in unpolarized photon collision mode varies from 32.09% to 1.89-1.89 % when s\sqrt{s} goes up from 500GeV500 GeV to 1.5TeV1.5 TeV.Comment: 22 pages and 13 figure

    Cyclic Density Functional Theory : A route to the first principles simulation of bending in nanostructures

    Full text link
    We formulate and implement Cyclic Density Functional Theory (Cyclic DFT) -- a self-consistent first principles simulation method for nanostructures with cyclic symmetries. Using arguments based on Group Representation Theory, we rigorously demonstrate that the Kohn-Sham eigenvalue problem for such systems can be reduced to a fundamental domain (or cyclic unit cell) augmented with cyclic-Bloch boundary conditions. Analogously, the equations of electrostatics appearing in Kohn-Sham theory can be reduced to the fundamental domain augmented with cyclic boundary conditions. By making use of this symmetry cell reduction, we show that the electronic ground-state energy and the Hellmann-Feynman forces on the atoms can be calculated using quantities defined over the fundamental domain. We develop a symmetry-adapted finite-difference discretization scheme to obtain a fully functional numerical realization of the proposed approach. We verify that our formulation and implementation of Cyclic DFT is both accurate and efficient through selected examples. The connection of cyclic symmetries with uniform bending deformations provides an elegant route to the ab-initio study of bending in nanostructures using Cyclic DFT. As a demonstration of this capability, we simulate the uniform bending of a silicene nanoribbon and obtain its energy-curvature relationship from first principles. A self-consistent ab-initio simulation of this nature is unprecedented and well outside the scope of any other systematic first principles method in existence. Our simulations reveal that the bending stiffness of the silicene nanoribbon is intermediate between that of graphene and molybdenum disulphide. We describe several future avenues and applications of Cyclic DFT, including its extension to the study of non-uniform bending deformations and its possible use in the study of the nanoscale flexoelectric effect.Comment: Version 3 of the manuscript, Accepted for publication in Journal of the Mechanics and Physics of Solids, http://www.sciencedirect.com/science/article/pii/S002250961630368

    Identification of potential biomarkers and immune infiltration characteristics in recurrent implantation failure using bioinformatics analysis

    Get PDF
    IntroductionRecurrent implantation failure (RIF) is a frustrating challenge because the cause is unknown. The current study aims to identify differentially expressed genes (DEGs) in the endometrium on the basis of immune cell infiltration characteristics between RIF patients and healthy controls, as well as to investigate potential prognostic markers in RIF.MethodsGSE103465, and GSE111974 datasets from the Gene Expression Omnibus database were obtained to screen DEGs between RIF and control groups. Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes Pathway analysis, Gene Set Enrichment Analysis, and Protein-protein interactions analysis were performed to investigate potential biological functions and signaling pathways. CIBERSORT was used to describe the level of immune infiltration in RIF, and flow cytometry was used to confirm the top two most abundant immune cells detected.Results122 downregulated and 66 upregulated DEGs were obtained between RIF and control groups. Six immune-related hub genes were discovered, which were involved in Wnt/-catenin signaling and Notch signaling as a result of our research. The ROC curves revealed that three of the six identified genes (AKT1, PSMB8, and PSMD10) had potential diagnostic values for RIF. Finally, we used cMap analysis to identify potential therapeutic or induced compounds for RIF, among which fulvestrant (estrogen receptor antagonist), bisindolylmaleimide-ix (CDK and PKC inhibitor), and JNK-9L (JNK inhibitor) were thought to influence the pathogenic process of RIF. Furthermore, our findings revealed the level of immune infiltration in RIF by highlighting three signaling pathways (Wnt/-catenin signaling, Notch signaling, and immune response) and three potential diagnostic DEGs (AKT1, PSMB8, and PSMD10).ConclusionImportantly, our findings may contribute to the scientific basis for several potential therapeutic agents to improve endometrial receptivity

    Author response

    Get PDF
    We recently reported that the C2AB portion of Synaptotagmin 1 (Syt1) could self-assemble into Ca(2+)-sensitive ring-like oligomers on membranes, which could potentially regulate neurotransmitter release. Here we report that analogous ring-like oligomers assemble from the C2AB domains of other Syt isoforms (Syt2, Syt7, Syt9) as well as related C2 domain containing protein, Doc2B and extended Synaptotagmins (E-Syts). Evidently, circular oligomerization is a general and conserved structural aspect of many C2 domain proteins, including Synaptotagmins. Further, using electron microscopy combined with targeted mutations, we show that under physiologically relevant conditions, both the Syt1 ring assembly and its rapid disruption by Ca(2+) involve the well-established functional surfaces on the C2B domain that are important for synaptic transmission. Our data suggests that ring formation may be triggered at an early step in synaptic vesicle docking and positions Syt1 to synchronize neurotransmitter release to Ca(2+) influx. DOI: http://dx.doi.org/10.7554/eLife.17262.00

    Exploring redox states, doping and ordering of electroactive star-shaped oligo(aniline)s

    Get PDF
    We have prepared a simple star‐shaped oligo(aniline) (TDPB) and characterised it in detail by MALDI‐TOF MS, UV/Vis/NIR spectroscopy, time‐dependent DFT, cyclic voltammetry and EPR spectroscopy. TDPB is part of an underdeveloped class of π‐conjugated molecules with great potential for organic electronics, display and sensor applications. It is redox active and reacts with acids to form radical cations. Acid‐doped TDPB shows behaviour similar to discotic liquid crystals, with X‐ray scattering investigations revealing columnar self‐assembled arrays. The combination of unpaired electrons and supramolecular stacking suggests that star‐shaped oligo(aniline)s like TDPB have the potential to form conducting nanowires and organic magnetic materials

    An analysis of farmers' perception of the new cooperative medical system in Liaoning Province, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since 2003, the number of pilot areas of the New Rural Cooperative Medical System (NRCMS) has increased in rural China. And the major efforts have been concentrated on the enrollment of prospective members. In this study, we examined the satisfaction of the rural residents with the NRCMS as well as factors affecting their attitudes towards the NRCMS.</p> <p>Methods</p> <p>The data for this study were collected from a survey involving twenty counties in Liaoning Province. Interviews and focus groups were conducted between 10<sup>th </sup>January and 20<sup>th </sup>August 2008. A total of 2,780 people aged 18-72 were randomly selected and interviewed. Data were evaluated by nonparametric tests and ordinal regression models.</p> <p>Results</p> <p>71.6% of the study subjects were satisfied with the NRCMS. Single factor analysis showed that attitudes towards the NRCMS were influenced by gender, age, marital status, and self-rated health status. In the ordinal regression analysis, gender, age, and self-rated health status affect satisfaction (P < 0.05).</p> <p>Conclusions</p> <p>We found that a considerable proportion of farmers were satisfied with the NRCMS. Gender, age, and self-rated health status had significant effects on farmers' attitudes towards the NRCMS. The Chinese Central Government attempted to adopt active measures in the future to continuously improve the NRCMS, including initiating educational programs, building new medical facilities and increasing financial investment.</p

    Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: The effects of precursors and annealing ambience on metal-free catalytic oxidation

    Get PDF
    A green and facile protocol of thermal treatment of graphene oxide (GO) with urea was adopted to synthesize nitrogen-doped graphene (NG-Urea-air) at a low temperature (350 °C) in the static air. The resulting sample exhibited outstanding catalytic performance to activate peroxymonosulfate (PMS) toward organic degradation. The NG-Urea-air induced 49.7- and 11.5-fold enhancement over GO and pristine reduced graphene oxide (rGO-air). Moreover, the influences of nitrogen precursors including organic chemicals (urea, cyanamide, and melamine) and inorganic salts (ammonium nitrate and ammonium chloride) were investigated, and urea was demonstrated to be the best precursor for synthesizing N-doped graphene with a relative high doping level (18.7 at.%). The classical radical quenching and advanced in situ electron paramagnetic resonance (EPR) technology revealed that the outstanding oxidative effectiveness of PMS/NG-Urea-air system was originated from the nonradical oxidation pathway, in which PMS was activated by the positively charged carbon domains next to nitrogen atoms and the phenol was oxidized simultaneously on the carbon network via rapid charge transfer. Meanwhile, singlet oxygen and radicals may also partially contribute to the complete phenol degradation. This study facilitates a fundamental investigation of heteroatom doping progress during thermal treatment and sheds light on the insights into carbocatalysis in environmental remediation
    corecore