96 research outputs found

    An Efficient Algorithm for Classical Density Functional Theory in Three Dimensions: Ionic Solutions

    Full text link
    Classical density functional theory (DFT) of fluids is a valuable tool to analyze inhomogeneous fluids. However, few numerical solution algorithms for three-dimensional systems exist. Here we present an efficient numerical scheme for fluids of charged, hard spheres that uses O(NlogN)\mathcal{O}(N\log N) operations and O(N)\mathcal{O}(N) memory, where NN is the number of grid points. This system-size scaling is significant because of the very large NN required for three-dimensional systems. The algorithm uses fast Fourier transforms (FFT) to evaluate the convolutions of the DFT Euler-Lagrange equations and Picard (iterative substitution) iteration with line search to solve the equations. The pros and cons of this FFT/Picard technique are compared to those of alternative solution methods that use real-space integration of the convolutions instead of FFTs and Newton iteration instead of Picard. For the hard-sphere DFT we use Fundamental Measure Theory. For the electrostatic DFT we present two algorithms. One is for the \textquotedblleft bulk-fluid\textquotedblright functional of Rosenfeld [Y. Rosenfeld. \textit{J. Chem. Phys.} 98, 8126 (1993)] that uses O(NlogN)\mathcal{O}(N\log N) operations. The other is for the \textquotedblleft reference fluid density\textquotedblright (RFD) functional [D. Gillespie et al., J. Phys.: Condens. Matter 14, 12129 (2002)]. This functional is significantly more accurate than the bulk-fluid functional, but the RFD algorithm requires O(N2)\mathcal{O}(N^{2}) operations.Comment: 23 pages, 4 figure

    Identifiability results for several classes of linear compartment models

    Full text link
    Identifiability concerns finding which unknown parameters of a model can be estimated from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In past work we identified a class of models, that we call identifiable cycle models, which are not identifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology.Comment: 7 figure

    Electromagnetic Compatibility Testing of Implantable Neurostimulators Exposed to Metal Detectors

    Get PDF
    This paper presents results of electromagnetic compatibility (EMC) testing of three implantable neurostimulators exposed to the magnetic fields emitted from several walk-through and hand-held metal detectors. The motivation behind this testing comes from numerous adverse event reports involving active implantable medical devices (AIMDs) and security systems that have been received by the Food and Drug Administration (FDA). EMC testing was performed using three neurostimulators exposed to the emissions from 12 walk-through metal detectors (WTMDs) and 32 hand-held metal detectors (HHMDs). Emission measurements were performed on all HHMDs and WTMDs and summary data is presented. Results from the EMC testing indicate possible electromagnetic interference (EMI) between one of the neurostimulators and one WTMD and indicate that EMI between the three neurostimulators and HHMDs is unlikely. The results suggest that worst case situations for EMC testing are hard to predict and testing all major medical device modes and setting parameters are necessary to understand and characterize the EMC of AIMDs

    Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation

    Get PDF
    The cytosol-facing membranes of cellular organelles contain proteins that enable signal transduction, regulation of morphology and trafficking, protein import and export, and other specialized processes. Discovery of these proteins by traditional biochemical fractionation can be plagued with contaminants and loss of key components. Using peroxidase-mediated proximity biotinylation, we captured and identified endogenous proteins on the outer mitochondrial membrane (OMM) and endoplasmic reticulum membrane (ERM) of living human fibroblasts. The proteomes of 137 and 634 proteins, respectively, are highly specific and highlight 94 potentially novel mitochondrial or ER proteins. Dataset intersection identified protein candidates potentially localized to mitochondria-ER contact sites. We found that one candidate, the tail-anchored, PDZ-domain-containing OMM protein SYNJ2BP, dramatically increases mitochondrial contacts with rough ER when overexpressed. Immunoprecipitation-mass spectrometry identified ribosome-binding protein 1 (RRBP1) as SYNJ2BP’s ERM binding partner. Our results highlight the power of proximity biotinylation to yield insights into the molecular composition and function of intracellular membranes.United States. National Institutes of Health (R01 CA186568)United States. National Institutes of Health (R01 GM077465

    Characterization of Leishmania donovani Aquaporins Shows Presence of Subcellular Aquaporins Similar to Tonoplast Intrinsic Proteins of Plants

    Get PDF
    Leishmania donovani, a protozoan parasite, resides in the macrophages of the mammalian host. The aquaporin family of proteins form important components of the parasite-host interface. The parasite-host interface could be a potential target for chemotherapy. Analysis of L. major and L. infantum genomes showed the presence of five aquaporins (AQPs) annotated as AQP9 (230aa), AQP putative (294aa), AQP-like protein (279aa), AQP1 (314aa) and AQP-like protein (596aa). We report here the structural modeling, localization and functional characterization of the AQPs from L. donovani. LdAQP1, LdAQP9, LdAQP2860 and LdAQP2870 have the canonical NPA-NPA motifs, whereas LdAQP putative has a non-canonical NPM-NPA motif. In the carboxyl terminal to the second NPA box of all AQPs except AQP1, a valine/alanine residue was found instead of the arginine. In that respect these four AQPs are similar to tonoplast intrinsic proteins in plants, which are localized to intracellular organelles. Confocal microscopy of L. donovani expressing GFP-tagged AQPs showed an intracellular localization of LdAQP9 and LdAQP2870. Real-time PCR assays showed expression of all aquaporins except LdAQP2860, whose level was undetectable. Three-dimensional homology modeling of the AQPs showed that LdAQP1 structure bears greater topological similarity to the aquaglyceroporin than to aquaporin of E. coli. The pore of LdAQP1 was very different from the rest in shape and size. The cavity of LdAQP2860 was highly irregular and undefined in geometry. For functional characterization, four AQP proteins were heterologously expressed in yeast. In the fps1Δ yeast cells, which lacked the key aquaglyceroporin, LdAQP1 alone displayed an osmosensitive phenotype indicating glycerol transport activity. However, expression of LdAQP1 and LdAQP putative in a yeast gpd1Δ strain, deleted for glycerol production, conferred osmosensitive phenotype indicating water transport activity or aquaporin function. Our analysis for the first time shows the presence of subcellular aquaporins and provides structural and functional characterization of aquaporins in Leishmania donovani

    Na+/K+-ATPase α1 Identified as an Abundant Protein in the Blood-Labyrinth Barrier That Plays an Essential Role in the Barrier Integrity

    Get PDF
    BACKGROUND:The endothelial-blood/tissue barrier is critical for maintaining tissue homeostasis. The ear harbors a unique endothelial-blood/tissue barrier which we term "blood-labyrinth-barrier". This barrier is critical for maintaining inner ear homeostasis. Disruption of the blood-labyrinth-barrier is closely associated with a number of hearing disorders. Many proteins of the blood-brain-barrier and blood-retinal-barrier have been identified, leading to significant advances in understanding their tissue specific functions. In contrast, capillaries in the ear are small in volume and anatomically complex. This presents a challenge for protein analysis studies, which has resulted in limited knowledge of the molecular and functional components of the blood-labyrinth-barrier. In this study, we developed a novel method for isolation of the stria vascularis capillary from CBA/CaJ mouse cochlea and provided the first database of protein components in the blood-labyrinth barrier as well as evidence that the interaction of Na(+)/K(+)-ATPase α1 (ATP1A1) with protein kinase C eta (PKCη) and occludin is one of the mechanisms of loud sound-induced vascular permeability increase. METHODOLOGY/PRINCIPAL FINDINGS:Using a mass-spectrometry, shotgun-proteomics approach combined with a novel "sandwich-dissociation" method, more than 600 proteins from isolated stria vascularis capillaries were identified from adult CBA/CaJ mouse cochlea. The ion transporter ATP1A1 was the most abundant protein in the blood-labyrinth barrier. Pharmacological inhibition of ATP1A1 activity resulted in hyperphosphorylation of tight junction proteins such as occludin which increased the blood-labyrinth-barrier permeability. PKCη directly interacted with ATP1A1 and was an essential mediator of ATP1A1-initiated occludin phosphorylation. Moreover, this identified signaling pathway was involved in the breakdown of the blood-labyrinth-barrier resulting from loud sound trauma. CONCLUSIONS/SIGNIFICANCE:The results presented here provide a novel method for capillary isolation from the inner ear and the first database on protein components in the blood-labyrinth-barrier. Additionally, we found that ATP1A1 interaction with PKCη and occludin was involved in the integrity of the blood-labyrinth-barrier

    Nicotinic receptors

    Get PDF
    Regulation of normal or abnormal behaviour is critically controlled by the central serotonergic systems. Recent evidence has suggested that serotonin (5-HT) neurotransmission dysfunction contributes to a variety of pathological conditions, including depression, anxiety, schizophrenia and Parkinson’s disorders. There is also a great amount of evidence indicating that 5-HT signalling may affect the reinforcing properties of drugs of abuse by the interaction and modulation of dopamine (DA) function. This chapter is focused on one of the more addictive drugs, nicotine. It is widely recognised that the effects of nicotine are strongly associated with the stimulatory action it exhibits on mesolimbic DAergic function. We outline the role of 5-HT and its plethora of receptors, focusing on 5-HT2 subtypes with relation to their involvement in the neurobiology of nicotine addiction. We also explore the novel pharmacological approaches using 5-HT agents for the treatment of nicotine dependence. Compelling evidence shows that 5-HT2C receptor agonists may be possible therapeutic targets for smoking cessation, although further investigation is required.peer-reviewe

    Study of doubly strange systems using stored antiprotons

    Get PDF
    Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the P‾ANDA experiment at FAIR. For the first time, high resolution γ-spectroscopy of doubly strange ΛΛ-hypernuclei will be performed, thus complementing measurements of ground state decays of ΛΛ-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Ξ−-atoms will be feasible and even the production of Ω−-atoms will be within reach. The latter might open the door to the |S|=3 world in strangeness nuclear physics, by the study of the hadronic Ω−-nucleus interaction. For the first time it will be possible to study the behavior of Ξ‾+ in nuclear systems under well controlled conditions
    corecore