66 research outputs found

    On-chip ultra low power optical wake-up receiver for wireless sensor nodes targeting structural health monitoring

    Get PDF
    Wireless sensor network (WSN) consists of distributed nodes deployed for monitoring the physical conditions and organizing collected data at the central control unit. Power consumption is the challenges in WSN as the network consists of wireless sensor nodes becomes denser. By utilizing WSN and visible light technology, a simple health monitoring system design can be approached that are smaller in size, faster and lower power consumption. This work focuses on design a low power optical wake-up receiver to reduce the energy consumption of each node in WSN. A wake-up receiver is designed to be always-on for detecting incoming signal and switches on the stand by protocol controller and WSN network for data transmission process. The characteristic of optical transmission and functional circuit of a wake-up receiver has been investigated. A low power optical wake-up receiver has been designed in 180nm Silterra CMOS process technology. The proposed wake-up receiver consumes only 443pW in standby mode and 1.89nW in active mode. The proposed optical wake-up receiver drastically reduces the power consumption by more than one third compared to other wake-up receivers which could be a milestone in the medical field if successfully conducted

    On-Chip Ultra Low Power Optical Wake-Up Receiver For Wireless Sensor Nodes Targeting Structural Health Monitoring

    Get PDF
    Wireless sensor network (WSN) consists of distributed nodes deployed for monitoring the physical conditions and organizing collected data at the central control unit. Power consumption is the challenges in WSN as the network consists of wireless sensor nodes becomes denser. By utilizing WSN and visible light technology, a simple health monitoring system design can be approached that are smaller in size, faster and lower power consumption. This work focuses on design a low power optical wake-up receiver to reduce the energy consumption of each node in WSN. A wake-up receiver is designed to be always-on for detecting incoming signal and switches on the stand by protocol controller and WSN network for data transmission process. The characteristic of optical transmission and functional circuit of a wake-up receiver has been investigated. A low power optical wake-up receiver has been designed in 180nm Silterra CMOS process technology. The proposed wake-up receiver consumes only 443pW in standby mode and 1.89nW in active mode. The proposed optical wake-up receiver drastically reduces the power consumption by more than one third compared to other wake-up receivers which could be a milestone in the medical field if successfully conducte

    Translating advances in the molecular basis of schizophrenia into novel cognitive treatment strategies

    Get PDF
    The presence and severity of cognitive symptoms, including working memory, executive dysfunction and attentional impairment, contributes materially to functional impairment in schizophrenia. Cognitive symptoms have proven resistant to both first- and second-generation antipsychotic drugs. Efforts to develop a consensus set of cognitive domains that are both disrupted in schizophrenia and are amenable to cross-species validation (e.g. the NIMH CNTRICS and RDoC initiatives) are an important step towards standardisation of outcome measures that can used in preclinical testing of new drugs. While causative genetic mutations have not been identified, new technologies have identified novel genes as well as hitherto candidate genes previously implicated in the pathophysiology of schizophrenia and/or mechanisms of antipsychotic efficacy. This review comprises a selective summary of these developments, particularly phenotypic data arising from preclinical genetic models for cognitive dysfunction in schizophrenia, with the aim of indicating potential new directions for pro-cognitive therapeutics

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF
    corecore