118 research outputs found

    Risk Factors for Interstitial Cystitis in the General Population and in Individuals With Depression

    Get PDF
    Purpose To identify risk factors for interstitial cystitis (IC), a chronic bladder disorder that may have a significant detrimental impact on quality of life, in the general population and in individuals with depression. Methods This was a comparative study using a US claims database. Adults who had records of a visit to the health system in 2010 or later were included. The outcome was the development of IC within 2 years after the index date. The index date for the general population was the first outpatient visit, and for individuals with depression, it was the date of the diagnosis of depression. IC was defined using the concepts of ulcerative and IC. We included all medical conditions present any time prior to the index visit as potential risk factors. Results The incidence of IC was higher in individuals with depression than in the general population. Of the 3,973,000 subjects from the general population, 2,293 (0.06%) developed IC within 2 years. Of the 249,200 individuals with depression, 320 (0.13%) developed IC. The characteristics of the individuals who developed IC were similar in both populations. Those who developed IC were slightly older, more likely to be women, and had more chronic pain conditions, malaise, and inflammatory disorders than patients without IC. In the general population, subjects who developed IC were more likely to have mood disorders, anxiety, and hypothyroidism. Conclusions The incidence of IC was higher in individuals with depression. Subjects who developed IC had more chronic pain conditions, depression, malaise, and inflammatory disorders

    A standardized analytics pipeline for reliable and rapid development and validation of prediction models using observational health data

    Get PDF
    Background and objective: As a response to the ongoing COVID-19 pandemic, several prediction models in the existing literature were rapidly developed, with the aim of providing evidence-based guidance. However, none of these COVID-19 prediction models have been found to be reliable. Models are commonly assessed to have a risk of bias, often due to insufficient reporting, use of non-representative data, and lack of large-scale external validation. In this paper, we present the Observational Health Data Sciences and Informatics (OHDSI) analytics pipeline for patient-level prediction modeling as a standardized approach for rapid yet reliable development and validation of prediction models. We demonstrate how our analytics pipeline and open-source software tools can be used to answer important prediction questions while limiting potential causes of bias (e.g., by validating phenotypes, specifying the target population, performing large-scale external validation, and publicly providing all analytical source code). Methods: We show step-by-step how to implement the analytics pipeline for the question: ‘In patients hospitalized with COVID-19, what is the risk of death 0 to 30 days after hospitalization?’. We develop models using six different machine learning methods in a USA claims database containing over 20,000 COVID-19 hospitalizations and externally validate the models using data containing over 45,000 COVID-19 hospitalizations from South Korea, Spain, and the USA. Results: Our open-source software tools enabled us to efficiently go end-to-end from problem design to reliable Model Development and evaluation. When predicting death in patients hospitalized with COVID-19, AdaBoost, random forest, gradient boosting machine, and decision tree yielded similar or lower internal and external validation discrimination performance compared to L1-regularized logistic regression, whereas the MLP neural network consistently resulted in lower discrimination. L1-regularized logistic regression models were well calibrated. Conclusion: Our results show that following the OHDSI analytics pipeline for patient-level prediction modelling can enable the rapid development towards reliable prediction models. The OHDSI software tools and pipeline are open source and available to researchers from all around the world.</p

    Phenotype Algorithms for the Identification and Characterization of Vaccine-Induced Thrombotic Thrombocytopenia in Real World Data: A Multinational Network Cohort Study

    Get PDF
    INTRODUCTION: Vaccine-induced thrombotic thrombocytopenia (VITT) has been identified as a rare but serious adverse event associated with coronavirus disease 2019 (COVID-19) vaccines. OBJECTIVES: In this study, we explored the pre-pandemic co-occurrence of thrombosis with thrombocytopenia (TWT) using 17 observational health data sources across the world. We applied multiple TWT definitions, estimated the background rate of TWT, characterized TWT patients, and explored the makeup of thrombosis types among TWT patients. METHODS: We conducted an international network retrospective cohort study using electronic health records and insurance claims data, estimating background rates of TWT amongst persons observed from 2017 to 2019. Following the principles of existing VITT clinical definitions, TWT was defined as patients with a diagnosis of embolic or thrombotic arterial or venous events and a diagnosis or measurement of thrombocytopenia within 7 days. Six TWT phenotypes were considered, which varied in the approach taken in defining thrombosis and thrombocytopenia in real world data. RESULTS: Overall TWT incidence rates ranged from 1.62 to 150.65 per 100,000 person-years. Substantial heterogeneity exists across data sources and by age, sex, and alternative TWT phenotypes. TWT patients were likely to be men of older age with various comorbidities. Among the thrombosis types, arterial thrombotic events were the most common. CONCLUSION: Our findings suggest that identifying VITT in observational data presents a substantial challenge, as implementing VITT case definitions based on the co-occurrence of TWT results in large and heterogeneous incidence rate and in a cohort of patints with baseline characteristics that are inconsistent with the VITT cases reported to date

    International cohort study indicates no association between alpha-1 blockers and susceptibility to COVID-19 in benign prostatic hyperplasia patients

    Get PDF
    Purpose: Alpha-1 blockers, often used to treat benign prostatic hyperplasia (BPH), have been hypothesized to prevent COVID-19 complications by minimising cytokine storm release. The proposed treatment based on this hypothesis currently lacks support from reliable real-world evidence, however. We leverage an international network of large-scale healthcare databases to generate comprehensive evidence in a transparent and reproducible manner.Methods: In this international cohort study, we deployed electronic health records from Spain (SIDIAP) and the United States (Department of Veterans Affairs, Columbia University Irving Medical Center, IQVIA OpenClaims, Optum DOD, Optum EHR). We assessed association between alpha-1 blocker use and risks of three COVID-19 outcomes-diagnosis, hospitalization, and hospitalization requiring intensive services-using a prevalent-user active-comparator design. We estimated hazard ratios using state-of-the-art techniques to minimize potential confounding, including large-scale propensity score matching/stratification and negative control calibration. We pooled database-specific estimates through random effects meta-analysis.Results: Our study overall included 2.6 and 0.46 million users of alpha-1 blockers and of alternative BPH medications. We observed no significant difference in their risks for any of the COVID-19 outcomes, with our meta-analytic HR estimates being 1.02 (95% CI: 0.92-1.13) for diagnosis, 1.00 (95% CI: 0.89-1.13) for hospitalization, and 1.15 (95% CI: 0.71-1.88) for hospitalization requiring intensive services.Conclusion: We found no evidence of the hypothesized reduction in risks of the COVID-19 outcomes from the prevalent-use of alpha-1 blockers-further research is needed to identify effective therapies for this novel disease.</p

    Phenotype Algorithms for the Identification and Characterization of Vaccine-Induced Thrombotic Thrombocytopenia in Real World Data:A Multinational Network Cohort Study

    Get PDF
    INTRODUCTION: Vaccine-induced thrombotic thrombocytopenia (VITT) has been identified as a rare but serious adverse event associated with coronavirus disease 2019 (COVID-19) vaccines. OBJECTIVES: In this study, we explored the pre-pandemic co-occurrence of thrombosis with thrombocytopenia (TWT) using 17 observational health data sources across the world. We applied multiple TWT definitions, estimated the background rate of TWT, characterized TWT patients, and explored the makeup of thrombosis types among TWT patients. METHODS: We conducted an international network retrospective cohort study using electronic health records and insurance claims data, estimating background rates of TWT amongst persons observed from 2017 to 2019. Following the principles of existing VITT clinical definitions, TWT was defined as patients with a diagnosis of embolic or thrombotic arterial or venous events and a diagnosis or measurement of thrombocytopenia within 7 days. Six TWT phenotypes were considered, which varied in the approach taken in defining thrombosis and thrombocytopenia in real world data. RESULTS: Overall TWT incidence rates ranged from 1.62 to 150.65 per 100,000 person-years. Substantial heterogeneity exists across data sources and by age, sex, and alternative TWT phenotypes. TWT patients were likely to be men of older age with various comorbidities. Among the thrombosis types, arterial thrombotic events were the most common. CONCLUSION: Our findings suggest that identifying VITT in observational data presents a substantial challenge, as implementing VITT case definitions based on the co-occurrence of TWT results in large and heterogeneous incidence rate and in a cohort of patints with baseline characteristics that are inconsistent with the VITT cases reported to date. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40264-022-01187-y

    Renin-angiotensin system blockers and susceptibility to COVID-19:an international, open science, cohort analysis

    Get PDF
    Background: Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) have been postulated to affect susceptibility to COVID-19. Observational studies so far have lacked rigorous ascertainment adjustment and international generalisability. We aimed to determine whether use of ACEIs or ARBs is associated with an increased susceptibility to COVID-19 in patients with hypertension.Methods: In this international, open science, cohort analysis, we used electronic health records from Spain (Information Systems for Research in Primary Care [SIDIAP]) and the USA (Columbia University Irving Medical Center data warehouse [CUIMC] and Department of Veterans Affairs Observational Medical Outcomes Partnership [VA-OMOP]) to identify patients aged 18 years or older with at least one prescription for ACEIs and ARBs (target cohort) or calcium channel blockers (CCBs) and thiazide or thiazide-like diuretics (THZs; comparator cohort) between Nov 1, 2019, and Jan 31, 2020. Users were defined separately as receiving either monotherapy with these four drug classes, or monotherapy or combination therapy (combination use) with other antihypertensive medications. We assessed four outcomes: COVID-19 diagnosis; hospital admission with COVID-19; hospital admission with pneumonia; and hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis. We built large-scale propensity score methods derived through a data-driven approach and negative control experiments across ten pairwise comparisons, with results meta-analysed to generate 1280 study effects. For each study effect, we did negative control outcome experiments using a possible 123 controls identified through a data-rich algorithm. This process used a set of predefined baseline patient characteristics to provide the most accurate prediction of treatment and balance among patient cohorts across characteristics. The study is registered with the EU Post-Authorisation Studies register, EUPAS35296.Findings: Among 1 355 349 antihypertensive users (363 785 ACEI or ARB monotherapy users, 248 915 CCB or THZ monotherapy users, 711 799 ACEI or ARB combination users, and 473 076 CCB or THZ combination users) included in analyses, no association was observed between COVID-19 diagnosis and exposure to ACEI or ARB monotherapy versus CCB or THZ monotherapy (calibrated hazard ratio [HR] 0·98, 95% CI 0·84-1·14) or combination use exposure (1·01, 0·90-1·15). ACEIs alone similarly showed no relative risk difference when compared with CCB or THZ monotherapy (HR 0·91, 95% CI 0·68-1·21; with heterogeneity of &gt;40%) or combination use (0·95, 0·83-1·07). Directly comparing ACEIs with ARBs demonstrated a moderately lower risk with ACEIs, which was significant with combination use (HR 0·88, 95% CI 0·79-0·99) and non-significant for monotherapy (0·85, 0·69-1·05). We observed no significant difference between drug classes for risk of hospital admission with COVID-19, hospital admission with pneumonia, or hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis across all comparisons.Interpretation: No clinically significant increased risk of COVID-19 diagnosis or hospital admission-related outcomes associated with ACEI or ARB use was observed, suggesting users should not discontinue or change their treatment to decrease their risk of COVID-19.</p

    Similar Risk of Kidney Failure among Patients with Blinding Diseases Who Receive Ranibizumab, Aflibercept, and Bevacizumab:An Observational Health Data Sciences and Informatics Network Study

    Get PDF
    Purpose: To characterize the incidence of kidney failure associated with intravitreal anti-VEGF exposure; and compare the risk of kidney failure in patients treated with ranibizumab, aflibercept, or bevacizumab. Design: Retrospective cohort study across 12 databases in the Observational Health Data Sciences and Informatics (OHDSI) network. Subjects: Subjects aged ≥ 18 years with ≥ 3 monthly intravitreal anti-VEGF medications for a blinding disease (diabetic retinopathy, diabetic macular edema, exudative age-related macular degeneration, or retinal vein occlusion). Methods: The standardized incidence proportions and rates of kidney failure while on treatment with anti-VEGF were calculated. For each comparison (e.g., aflibercept versus ranibizumab), patients from each group were matched 1:1 using propensity scores. Cox proportional hazards models were used to estimate the risk of kidney failure while on treatment. A random effects meta-analysis was performed to combine each database's hazard ratio (HR) estimate into a single network-wide estimate. Main Outcome Measures: Incidence of kidney failure while on anti-VEGF treatment, and time from cohort entry to kidney failure. Results: Of the 6.1 million patients with blinding diseases, 37 189 who received ranibizumab, 39 447 aflibercept, and 163 611 bevacizumab were included; the total treatment exposure time was 161 724 person-years. The average standardized incidence proportion of kidney failure was 678 per 100 000 persons (range, 0–2389), and incidence rate 742 per 100 000 person-years (range, 0–2661). The meta-analysis HR of kidney failure comparing aflibercept with ranibizumab was 1.01 (95% confidence interval [CI], 0.70–1.47; P = 0.45), ranibizumab with bevacizumab 0.95 (95% CI, 0.68–1.32; P = 0.62), and aflibercept with bevacizumab 0.95 (95% CI, 0.65–1.39; P = 0.60). Conclusions: There was no substantially different relative risk of kidney failure between those who received ranibizumab, bevacizumab, or aflibercept. Practicing ophthalmologists and nephrologists should be aware of the risk of kidney failure among patients receiving intravitreal anti-VEGF medications and that there is little empirical evidence to preferentially choose among the specific intravitreal anti-VEGF agents. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</p

    Characteristics and outcomes of 627 044 COVID-19 patients living with and without obesity in the United States, Spain, and the United Kingdom

    Get PDF
    Altres ajuts: This research received partial support from the National Institute for Health Research (NIHR) Oxford Biomedical Research Center (BRC), US National Institutes of Health, US Department of Veterans Affairs, Janssen Research & Development, and IQVIA. The University of Oxford received funding related to this work from the Bill & Melinda Gates Foundation (Investment ID INV016201 and INV-019257). APU has received funding from the Medical Research Council (MRC) [MR/K501256/1, MR/N013468/1] and Fundación Alfonso Martín Escudero (FAME) (APU). VINCI [VA HSR RES 13-457] (SLD, MEM, KEL). JCEL has received funding from the Medical Research Council (MR/K501256/1) and Versus Arthritis (21605). MR is funded by Wereld Kanker Onderzoek Fonds (WKOF), as part of the World Cancer Research Fund International grant program [grant number: 2017/1630]A detailed characterization of patients with COVID-19 living with obesity has not yet been undertaken. We aimed to describe and compare the demographics, medical conditions, and outcomes of COVID-19 patients living with obesity (PLWO) to those of patients living without obesity. We conducted a cohort study based on outpatient/inpatient care and claims data from January to June 2020 from Spain, the UK, and the US. We used six databases standardized to the OMOP common data model. We defined two non-mutually exclusive cohorts of patients diagnosed and/or hospitalized with COVID-19; patients were followed from index date to 30 days or death. We report the frequency of demographics, prior medical conditions, and 30-days outcomes (hospitalization, events, and death) by obesity status. We included 627 044 (Spain: 122 058, UK: 2336, and US: 502 650) diagnosed and 160 013 (Spain: 18 197, US: 141 816) hospitalized patients with COVID-19. The prevalence of obesity was higher among patients hospitalized (39.9%, 95%CI: 39.8−40.0) than among those diagnosed with COVID-19 (33.1%; 95%CI: 33.0−33.2). In both cohorts, PLWO were more often female. Hospitalized PLWO were younger than patients without obesity. Overall, COVID-19 PLWO were more likely to have prior medical conditions, present with cardiovascular and respiratory events during hospitalization, or require intensive services compared to COVID-19 patients without obesity. We show that PLWO differ from patients without obesity in a wide range of medical conditions and present with more severe forms of COVID-19, with higher hospitalization rates and intensive services requirements. These findings can help guiding preventive strategies of COVID-19 infection and complications and generating hypotheses for causal inference studies

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Characteristics and outcomes of over 300,000 patients with COVID-19 and history of cancer in the United States and Spain

    Get PDF
    Background: We described the demographics, cancer subtypes, comorbidities, and outcomes of patients with a history of cancer and coronavirus disease 2019 (COVID-19). Second, we compared patients hospitalized with COVID-19 to patients diagnosed with COVID-19 and patients hospitalized with influenza. Methods: We conducted a cohort study using eight routinely collected health care databases from Spain and the United States, standardized to the Observational Medical Outcome Partnership common data model. Three cohorts of patients with a history of cancer were included: (i) diagnosed with COVID-19, (ii) hospitalized with COVID-19, and (iii) hospitalized with influenza in 2017 to 2018. Patients were followed from index date to 30 days or death. We reported demographics, cancer subtypes, comorbidities, and 30-day outcomes. Results: We included 366,050 and 119,597 patients diagnosed and hospitalized with COVID-19, respectively. Prostate and breast cancers were the most frequent cancers (range: 5%–18% and 1%–14% in the diagnosed cohort, respectively). Hematologic malignancies were also frequent, with non-Hodgkin’s lymphoma being among the five most common cancer subtypes in the diagnosed cohort. Overall, patients were aged above 65 years and had multiple comorbidities. Occurrence of death ranged from 2% to 14% and from 6% to 26% in the diagnosed and hospitalized COVID-19 cohorts, respectively. Patients hospitalized with influenza (n ¼ 67,743) had a similar distribution of cancer subtypes, sex, age, and comorbidities but lower occurrence of adverse events. Conclusions: Patients with a history of cancer and COVID-19 had multiple comorbidities and a high occurrence of COVID-19-related events. Hematologic malignancies were frequent. Impact: This study provides epidemiologic characteristics that can inform clinical care and etiologic studies.</p
    corecore