109 research outputs found

    Immunomodulation and T Helper TH1/TH2 Response Polarization by CeO2 and TiO2 Nanoparticles

    Get PDF
    Immunomodulation by nanoparticles, especially as related to the biochemical properties of these unique materials, has scarcely been explored. In an in vitro model of human immunity, we demonstrate two catalytic nanoparticles, TiO2 (oxidant) and CeO2 (antioxidant), have nearly opposite effects on human dendritic cells and T helper (T-H) cells. For example, whereas TiO2 nanoparticles potentiated DC maturation that led towards T(H)1-biased responses, treatment with antioxidant CeO2 nanoparticles induced APCs to secrete the anti-inflammatory cytokine, IL-10, and induce a T(H)2-dominated T cell profile. In subsequent studies, we demonstrate these results are likely explained by the disparate capacities of the nanoparticles to modulate ROS, since TiO2, but not CeO2 NPs, induced inflammatory responses through an ROS/inflammasome/IL-1 beta pathway. This novel capacity of metallic NPs to regulate innate and adaptive immunity in profoundly different directions via their ability to modulate dendritic cell function has strong implications for human health since unintentional exposure to these materials is common in modern societies

    X-ray structures of checkpoint kinase 2 in complex with inhibitors that target its gatekeeper-dependent hydrophobic pocket

    Get PDF
    AbstractThe serine/threonine checkpoint kinase 2 (Chk2) is an attractive molecular target for the development of small molecule inhibitors to treat cancer. Here, we report the rational design of Chk2 inhibitors that target the gatekeeper-dependent hydrophobic pocket located behind the adenine-binding region of the ATP-binding site. These compounds exhibit IC50 values in the low nanomolar range and are highly selective for Chk2 over Chk1. X-ray crystallography was used to determine the structures of the inhibitors in complex with the catalytic kinase domain of Chk2 to verify their modes of binding

    Immunomodulation and T Helper TH1/TH2 Response Polarization by CeO2 and TiO2 Nanoparticles

    Get PDF
    Immunomodulation by nanoparticles, especially as related to the biochemical properties of these unique materials, has scarcely been explored. In an in vitro model of human immunity, we demonstrate two catalytic nanoparticles, TiO2 (oxidant) and CeO2 (antioxidant), have nearly opposite effects on human dendritic cells and T helper (T-H) cells. For example, whereas TiO2 nanoparticles potentiated DC maturation that led towards T(H)1-biased responses, treatment with antioxidant CeO2 nanoparticles induced APCs to secrete the anti-inflammatory cytokine, IL-10, and induce a T(H)2-dominated T cell profile. In subsequent studies, we demonstrate these results are likely explained by the disparate capacities of the nanoparticles to modulate ROS, since TiO2, but not CeO2 NPs, induced inflammatory responses through an ROS/inflammasome/IL-1 beta pathway. This novel capacity of metallic NPs to regulate innate and adaptive immunity in profoundly different directions via their ability to modulate dendritic cell function has strong implications for human health since unintentional exposure to these materials is common in modern societies

    Organizational theory for dissemination and implementation research

    Get PDF
    Abstract Background Even under optimal internal organizational conditions, implementation can be undermined by changes in organizations’ external environments, such as fluctuations in funding, adjustments in contracting practices, new technology, new legislation, changes in clinical practice guidelines and recommendations, or other environmental shifts. Internal organizational conditions are increasingly reflected in implementation frameworks, but nuanced explanations of how organizations’ external environments influence implementation success are lacking in implementation research. Organizational theories offer implementation researchers a host of existing, highly relevant, and heretofore largely untapped explanations of the complex interaction between organizations and their environment. In this paper, we demonstrate the utility of organizational theories for implementation research. Discussion We applied four well-known organizational theories (institutional theory, transaction cost economics, contingency theories, and resource dependency theory) to published descriptions of efforts to implement SafeCare, an evidence-based practice for preventing child abuse and neglect. Transaction cost economics theory explained how frequent, uncertain processes for contracting for SafeCare may have generated inefficiencies and thus compromised implementation among private child welfare organizations. Institutional theory explained how child welfare systems may have been motivated to implement SafeCare because doing so aligned with expectations of key stakeholders within child welfare systems’ professional communities. Contingency theories explained how efforts such as interagency collaborative teams promoted SafeCare implementation by facilitating adaptation to child welfare agencies’ internal and external contexts. Resource dependency theory (RDT) explained how interagency relationships, supported by contracts, memoranda of understanding, and negotiations, facilitated SafeCare implementation by balancing autonomy and dependence on funding agencies and SafeCare developers. Summary In addition to the retrospective application of organizational theories demonstrated above, we advocate for the proactive use of organizational theories to design implementation research. For example, implementation strategies should be selected to minimize transaction costs, promote and maintain congruence between organizations’ dynamic internal and external contexts over time, and simultaneously attend to organizations’ financial needs while preserving their autonomy. We describe implications of applying organizational theory in implementation research for implementation strategies, the evaluation of implementation efforts, measurement, research design, theory, and practice. We also offer guidance to implementation researchers for applying organizational theory

    Ontogeny of Toll-Like Receptor Mediated Cytokine Responses of Human Blood Mononuclear Cells

    Get PDF
    Newborns and young infants suffer increased infectious morbidity and mortality as compared to older children and adults. Morbidity and mortality due to infection are highest during the first weeks of life, decreasing over several years. Furthermore, most vaccines are not administered around birth, but over the first few years of life. A more complete understanding of the ontogeny of the immune system over the first years of life is thus urgently needed. Here, we applied the most comprehensive analysis focused on the innate immune response following TLR stimulation over the first 2 years of life in the largest such longitudinal cohort studied to-date (35 subjects). We found that innate TLR responses (i) known to support Th17 adaptive immune responses (IL-23, IL-6) peaked around birth and declined over the following 2 years only to increase again by adulthood; (ii) potentially supporting antiviral defense (IFN-α) reached adult level function by 1 year of age; (iii) known to support Th1 type immunity (IL-12p70, IFN-γ) slowly rose from a low at birth but remained far below adult responses even at 2 years of age; (iv) inducing IL-10 production steadily declined from a high around birth to adult levels by 1 or 2 years of age, and; (v) leading to production of TNF-α or IL-1β varied by stimuli. Our data contradict the notion of a linear progression from an ‘immature’ neonatal to a ‘mature’ adult pattern, but instead indicate the existence of qualitative and quantitative age-specific changes in innate immune reactivity in response to TLR stimulation

    A mutation of EPT1 (SELENOI) underlies a new disorder of Kennedy pathway phospholipid biosynthesis.

    Get PDF
    Mutations in genes involved in lipid metabolism have increasingly been associated with various subtypes of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative motor neuron disorders characterized by spastic paraparesis. Here, we report an unusual autosomal recessive neurodegenerative condition, best classified as a complicated form of hereditary spastic paraplegia, associated with mutation in the ethanolaminephosphotransferase 1 (EPT1) gene (now known as SELENOI), responsible for the final step in Kennedy pathway forming phosphatidylethanolamine from CDP-ethanolamine. Phosphatidylethanolamine is a glycerophospholipid that, together with phosphatidylcholine, constitutes more than half of the total phospholipids in eukaryotic cell membranes. We determined that the mutation defined dramatically reduces the enzymatic activity of EPT1, thereby hindering the final step in phosphatidylethanolamine synthesis. Additionally, due to central nervous system inaccessibility we undertook quantification of phosphatidylethanolamine levels and species in patient and control blood samples as an indication of liver phosphatidylethanolamine biosynthesis. Although this revealed alteration to levels of specific phosphatidylethanolamine fatty acyl species in patients, overall phosphatidylethanolamine levels were broadly unaffected indicating that in blood EPT1 inactivity may be compensated for, in part, via alternate biochemical pathways. These studies define the first human disorder arising due to defective CDP-ethanolamine biosynthesis and provide new insight into the role of Kennedy pathway components in human neurological function

    Descent toward the icehouse: Eocene sea surface cooling inferred from GDGT distributions

    Get PDF
    The TEX86 proxy, based on the distribution of marine isoprenoidal glycerol dialkyl glycerol tetraether lipids (GDGTs), is increasingly used to reconstruct sea surface temperature (SST) during the Eocene epoch (56.0–33.9 Ma). Here we compile published TEX86 records, critically reevaluate them in light of new understandings in TEX86 palaeothermometry, and supplement them with new data in order to evaluate long-term temperature trends in the Eocene. We investigate the effect of archaea other than marine Thaumarchaeota upon TEX86 values using the branched-to-isoprenoid tetraether index (BIT), the abundance of GDGT-0 relative to crenarchaeol (%GDGT-0), and the Methane Index (MI). We also introduce a new ratio, % GDGTRS, which may help identify Red Sea-type GDGT distributions in the geological record. Using the offset between TEX86H and TEX86L(ΔH-L) and the ratio between GDGT-2 and GDGT-3 ([2]/[3]), we evaluate different TEX86 calibrations and present the first integrated SST compilation for the Eocene (55 to 34 Ma). Although the available data are still sparse some geographic trends can now be resolved. In the high latitudes (>55°), there was substantial cooling during the Eocene (~6°C). Our compiled record also indicates tropical cooling of ~2.5°C during the same interval. Using an ensemble of climate model simulations that span the Eocene, our results indicate that only a small percentage (~10%) of the reconstructed temperature change can be ascribed to ocean gateway reorganization or paleogeographic change. Collectively, this indicates that atmospheric carbon dioxide (pCO2) was the likely driver of surface water cooling during the descent toward the icehouse

    The Magnitude of Global Marine Species Diversity

    Get PDF
    Background: The question of how many marine species exist is important because it provides a metric for how much we do and do not know about life in the oceans. We have compiled the first register of the marine species of the world and used this baseline to estimate how many more species, partitioned among all major eukaryotic groups, may be discovered. Results: There are ∼226,000 eukaryotic marine species described. More species were described in the past decade (∼20,000) than in any previous one. The number of authors describing new species has been increasing at a faster rate than the number of new species described in the past six decades. We report that there are ∼170,000 synonyms, that 58,000–72,000 species are collected but not yet described, and that 482,000–741,000 more species have yet to be sampled. Molecular methods may add tens of thousands of cryptic species. Thus, there may be 0.7–1.0 million marine species. Past rates of description of new species indicate there may be 0.5 ± 0.2 million marine species. On average 37% (median 31%) of species in over 100 recent field studies around the world might be new to science. Conclusions: Currently, between one-third and two-thirds of marine species may be undescribed, and previous estimates of there being well over one million marine species appear highly unlikely. More species than ever before are being described annually by an increasing number of authors. If the current trend continues, most species will be discovered this century

    The SOD1-mediated ALS phenotype shows a decoupling between age of symptom onset and disease duration

    Get PDF
    Superoxide dismutase (SOD1) gene variants may cause amyotrophic lateral sclerosis, some of which are associated with a distinct phenotype. Most studies assess limited variants or sample sizes. In this international, retrospective observational study, we compare phenotypic and demographic characteristics between people with SOD1-ALS and people with ALS and no recorded SOD1 variant. We investigate which variants are associated with age at symptom onset and time from onset to death or censoring using Cox proportional-hazards regression. The SOD1-ALS dataset reports age of onset for 1122 and disease duration for 883 people; the comparator population includes 10,214 and 9010 people respectively. Eight variants are associated with younger age of onset and distinct survival trajectories; a further eight associated with younger onset only and one with distinct survival only. Here we show that onset and survival are decoupled in SOD1-ALS. Future research should characterise rarer variants and molecular mechanisms causing the observed variability
    corecore