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X-ray structures of checkpoint kinase 2 in complex with inhibitors that target
its gatekeeper-dependent hydrophobic pocket
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The serine/threonine checkpoint kinase 2 (Chk2) is an attractive molecular target for the develop-
ment of small molecule inhibitors to treat cancer. Here, we report the rational design of Chk2 inhib-
itors that target the gatekeeper-dependent hydrophobic pocket located behind the adenine-binding
region of the ATP-binding site. These compounds exhibit IC50 values in the low nanomolar range and
are highly selective for Chk2 over Chk1. X-ray crystallography was used to determine the structures
of the inhibitors in complex with the catalytic kinase domain of Chk2 to verify their modes of
binding.

Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction

The serine/threonine checkpoint kinase 2 (Chk2) is an impor-
tant component of the intracellular signaling network that
responds to DNA damage and maintains genomic integrity [1–3].
Activation of Chk2 is mediated primarily by ATM or DNA-PK (also
ATR and hMPs1) by phosphorylation of Thr68 in the SQ/TQ cluster
domain [4] which initiates homodimerization of Chk2 monomers
followed by trans-activating autophosphorylation of Thr383 and
Thr387 [5] and subsequently the cis-phosphorylation of Ser516
[6]. The activated Chk2 monomers phosphorylate a number of
downstream substrates that are involved in the regulation of the
cell cycle [7], DNA repair [8,9], chromosome stability [10], and/or
the initiation of apoptosis [1].

Chk2 has been identified as a potential molecular target for anti-
cancer drug design, particularly in p53-defective tumors [1,11–13]
and recently in DNA repair (Mus81)-deficient tumors [14]. Selective
inhibition of Chk2 in p53-deficient tumor cell lines in synergy with
DNA-damaging chemotherapeutics may help increase the sensitiv-
ity of these tumors to current chemotherapy agents by targeting
the G2 checkpoint and thereby blocking the protective mechanisms
lf of the Federation of European Bi
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conferred by cell-cycle checkpoints and DNA repair pathways
[1,11,12,15–20]. Previous studies have shown that the Chk2 specific
inhibitor, PV1019, potentiated the cytotoxicity of campothecin and
topotecan in three ovarian cancer cell lines that had high levels of
endogeneously activated Chk2 [21]. Another advantageous feature
of selective Chk2 inhibitors may be their ability to protect normal
cells against ionizing radiation and chemotherapeutics by blocking
Chk2-dependent activation of p53 [1,22]. Prior studies have shown
that treatment of mouse thymocytes and human T-cells with selec-
tive Chk2 inhibitors provides protection against radiation
[21,23,24]. Finally, the use of selective Chk2 inhibitors by them-
selves may confer some therapeutic benefit since Chk2 plays impor-
tant roles in tumor cell adaptation to changes resulting from the
cycling nature of hypoxia and reoxygenation found in solid tumors
[17], the activation of BRCA1 [8,10], and in the release of survivin
[15]. Indeed, the Chk2 inhibitor PV1019 exhibited antiproliferative
effects against tumor cell lines from the NCI-60 with high endoge-
nous levels of activated Chk2 [21].

In this study, we used X-ray crystallography to assist in further
modification of the Chk2 inhibitor PV1019 that was developed by
our laboratories [21]. Based on prior crystallographic evidence,
the binding mode of PV1019 in the ATP-binding site of Chk2
revealed that the gatekeeper-dependent hydrophobic pocket
(GDHP) was partially occupied by the methyl group of PV1019.
ochemical Societies.
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The size of the pocket is sufficient to accommodate additional sub-
stituents on the methyl group. Since the potency and selectivity of
other kinase inhibitors has been improved by targeting analogous
GDHPs [25,26], we sought to modify the chemical scaffold of
PV1019 in order to achieve binding to this pocket in Chk2.

2. Materials and methods

2.1. Biochemical characterization of inhibitors

The catalytic domain of human Chk2 (Ser210-Glu531) was ex-
pressed and purified as described [27]. The IMAP Screening Express
Kit (Molecular Devices, Sunnyvale, CA) was used for conducting
inhibition assays. The compounds used in this study were synthe-
sized by Provid Pharmaceuticals and dissolved in DMSO. Reactions
were performed using recombinant human Chk2, RSK2 and Chk1
(Millipore, Billerica, MA)) with compounds in reaction buffer
(10 mM Tris–HCl, pH 7.2, 10 mM magnesium chloride, 0.1% bovine
serum albumin, 1 mM dithiothreitol, 10 mM ATP, and 100 nM pep-
tide substrate) in a total volume of 5 lL in 384-well plates for
60 min at room temperature. Substrates used in the assay were
Fig. 1. Chemical structures of (a) PV1019, (b

Fig. 2. (a) Stereo view of PV1322 (carbon atoms in gray) in complex with Chk2 (carbon a
with those of Chk1-ABO (orange) complex (PDB code: 2C3K).
5FAM-AMRLERQDSIFYPK-NH2 for Chk2, 5FAM-ALKLVRYPSFVI-
TAK-NH2 for Chk1, and 5FAM-AKRRRLSSLRA-OH for RSK2 (all from
Molecular Devices). Fifteen microliters of IMAP binding reagent
were added to each well, the plates were incubated for 30 min at
room temperature, and fluorescence polarization was measured
using a Tecan Ultra plate reader at wavelengths of 485 nm for exci-
tation and 535 nm for emission. Each screening plate contained
staurosporine as a positive control.

2.2. Crystallization and structure solution

Crystallization of Chk2-inhibitor complexes was performed as
previously described [27]. X-ray diffraction data were collected
from crystals held at approximately 100 K, using a 1.0 Å wave-
length, an oscillation angle of 1.0�, and a 3 s exposure time. The
data were integrated and scaled using HKL3000 [28]. The struc-
tures were solved by molecular replacement with MOLREP [29]
using the coordinates of the Chk2-PV1019 complex (PDB ID:
2W7X) and refined with REFMAC5 [30]. Model validation was per-
formed with MolProbity [31]. All data collection and refinement
statistics are presented in Table 2.
) PV1322, (c) PV1352 and (d) PV1162.

toms in green). (b) Superimposed coordinates of the Chk2-PV1322 (green) complex
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3. Results and discussion

3.1. Structure of Chk2 in complex with PV1322

Using the crystal structure of Chk2 in complex with PV1019 as
the starting point for further optimization [21], we modified the
core scaffold of PV1019 (Fig. 1a) by designing the indoyl-indole
analog PV1322 (Fig. 1b). In the kinase inhibition assay, PV1322
exhibited an IC50 value of 12.67 nM and was selective for Chk2 over
Chk1 (IC50 = 34 lM) and RSK2 (IC50 > 100 lM). The indolyl-indole
modification of PV1019 resulted in a new lead series for Chk2 by
replacement of the core aryl ring of the phenyl guanidinohydraz-
one. The 1.89 Å resolution crystal structure of the Chk2-PV1322
complex revealed that incorporation of the indolyl-indole moiety
reverses the directionality of the amide bond linker between the
two aryl ring systems while at the same time retaining the
water-mediated hydrogen bonds between the carbonyl oxygen
and the backbone amide NH of Met304 and the backbone carbonyl
oxygen of Glu302 in the hinge region of Chk2 via water 221
(Fig. 2a). The core indole group retains several of the van der Waals
interactions between the aryl ring and the cluster of aliphatic res-
idues in the ATP-binding site including Val234, Leu301, Leu354,
the methyl group of Thr367, and the aliphatic portion of the
Lys249 side chain. Water 57 mediates a hydrogen-bonding net-
work involving the carboxylate side chain of Glu308, the indole
NH and the nitrogen located between the carbonyl group and ter-
minal indole. The terminal guanidine moiety of PV1322 maintains
its hydrogen bonds with the Glu273 side chain, as seen in the
Chk2-PV1019 complex. Replacement of the 7-nitro-indole group
Table 1
IC50 (nM) Values for inhibitors.*

Inhibitor Chk2 Chk1 RSK2

PV1322 12.67 ± 11.90 34000 >100000
PV1019 0.16 ± 0.03 8100 39000
PV1352 0.17 ± 0.01 36000** >100000
PV1162 0.29 ± 0.14 59000** >100000

* Tabulated data is from head-to-head testing using a single
batches of each enzyme. Chk2 values are the mean ± S.D.
from at least duplicate experiments. Chk1 and RSK2 deter-
minations were single assays except as indicated of PV1352
and PV1162.
** Archival assay data (mean of duplicate assays).

Table 2
X-ray data collection and refinement statistics.

Chk2 complex PV1322
Space group P3221
Unit cell a = b, c (Å) 90.6, 93.6
Resolution (Å)a 50–1.89 (1.97–1.89)
Total/unique Reflections 171881/34829
Completeness (%) 97.7 (99.4)
Redundancy 5.0 (4.9)
I/r(I) 14.0 (2.4)
Rsym

b 0.088 (0.605)
Resolution 50–1.90
No. of reflections (refinement/Rfree) 33074/1753
R/Rfree

c 0.199/0.234
No. of atoms/mean B factor (Å)
Protein 2262/42.9
Inhibitor 28/39.0
Water 222/32.8
Ion 4/37.6
PDB ID 2YIQ

a Values in parentheses are for reflections in the highest resolution she
b Rsym =

P
hkl
P

i |Ii (h k l) – <I(h k l)>|/
P

hkl
P

i Ii(h k l), where <I(h k l)> is
c R =

P
|Fobs(h k l) – Fcalc(h k l)|/

P
|Fobs(hkl)|. Rfree is the R value calculate
of PV1019 with the indole in PV1322 results in the indole binding
to the hinge region via a hydrogen bond between the indole NH
and the backbone carbonyl oxygen of Met304.

The methyl moiety of PV1322 partially occupies the GDHP as
observed in prior crystallographic studies with the Chk2-specific
inhibitors NSC 109555 and PV1019 [21]. The GDHP is located be-
hind the adenine-binding region of the ATP-binding site and its
accessibility by inhibitors of other kinases has been shown to be
dependent on the size of the gatekeeper residue (Leu301 in
Chk2) [25,32]. Large and bulky residues at this position can block
access to the GDHP, whereas more compact gatekeeper residues al-
low bulkier substituents to be incorporated into the pocket. Fur-
thermore, the amino acids that form the GDHPs in various
kinases are not conserved and, consequently, this pocket can act
as a selectivity filter for kinase inhibitors. Superposition of the
coordinates of the Chk2-PV1322 complex with those of the Chk1-
ABO inhibitor complex revealed that the methyl group of PV1322
and the methoxyphenol of the ABO inhibitor occupy a similar posi-
tion in the GDHPs (Fig. 2b) [33]. However, the GDHPs of Chk1 and
Chk2 differ. Although both kinases share a leucine residue at the
gatekeeper position, in Chk2 the GDHP is lined almost entirely by
hydrophobic residues whereas in Chk1 the top of the pocket is
capped by a polar Asn59 residue (Leu277 in Chk2). Accordingly,
we endeavored to exploit this difference between Chk2 and Chk1to
design new inhibitors that would occupy the GDHP in Chk2.

3.2. Structures of Chk2 in complex with PV1352 and PV1162

PV1019 was selected as the starting point for modification
because it was more potent than PV1322 (IC50 = 0.16 nM, Table 1)
although less selective for Chk2. Analog PV1352 (Fig. 1c) was de-
signed by replacing the methyl group in PV1019 with a cyclohexane
ring fused to the aryl ring of the phenyl bisguanidinohydrazone.
PV1352 exhibited an IC50 of 0.17 nM, which is almost identical to
that of PV1019, yet it was more selective than the latter compound
for Chk2 over Chk1 and RSK2. Indeed, PV1352 exhibited minimal
inhibition of Chk1 and its IC50 for RSK2 was much weaker than that
of PV1019 (>100 lM vs. 39 lM, respectively). The 2.1 Å structure of
Chk2 in complex with PV1352 showed that the core scaffold retains
the same interactions that were observed in the PV1019 complex,
but the newly introduced cyclohexane group now occupies the
GDHP and makes favorable hydrophobic contacts with the residues
that line it (Fig. 3a). The structural basis for the increased specificity
PV1352 PV1162
P3221 P3221
91.2, 93.5 91.2, 93.5
50–2.10 (2.18–2.10) 50–2.20 (2.28–2.20)
291871/26631 160173/23346
99.8 (100) 99.7 (100)
11.0 (10.2) 6.9 (6.9)
53.6 (3.8) 35.1 (3.7)
0.055 (0.675) 0.070 (0.548)
50–2.10 50–2.20
25239/1338 22111/1200
0.195/0.225 0.196/0.226

2285/47.2 2299/47.7
30/54.9 29/40.2
173/29.6 138/23.5
4/70.3 4/52.6
2YIR 2YIT

ll.
the mean intensity of multiply recorded reflections.
d for 5% of the data set not included in the refinement.



Fig. 3. Stereo views of the crystal structures of (a) Chk2 (green) in complex with PV1352 (gray), (b) superimposed coordinates of Chk2-PV1352 complex (green) with Chk1-
ABO complex (orange), (c) Chk2-PV1162 (gray) complex, and (d) superimposed coordinates of Chk2-PV1162 and Chk1-ABO complexes.
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of PV1352 can be inferred by superimposing the coordinates of the
Chk2-PV1352 and Chk1-ABO complexes (Fig 3b), which reveals that
the polar Asn59 residue of Chk1 would be in contact with the cyclo-
hexane ring of PV1352, thereby resulting in an unfavorable polar–
non-polar interaction. Inhibitor PV1162 (Fig. 1d) was designed by
replacing the 7-nitro-indole group of PV1019 with a 5-methoxy-in-
dole and substituting the methyl group with an isobutyl moiety.
This compound exhibited an IC50 of 0.29 nM for Chk2 and minimal
activity against Chk1. Like PV1352, whereas PV1162 did not exhibit
a substantial gain in potency, it did demonstrate a marked improve-
ment in selectivity for Chk2 over Chk1 and RSK2. The 2.2 Å struc-
ture of Chk2 in complex with PV1162 (Fig. 3c) reveals new
binding interactions around the 5-methoxy-indole moiety. Water
2042 mediates a water-bridged hydrogen-bonding network be-
tween the indole NH and the side chain carboxylate of Glu308 as
well as to the nitrogen between the carbonyl and aryl ring. Several
van der Waals interactions between residues Leu226, Val234,
Leu303, Gly307, and the aliphatic portion of the Glu305 side chain
and the 5-methoxy-indole contribute to binding interactions. The
isobutyl moiety occupies but does not entirely fill the hydrophobic
pocket. However, the structural overlay with the Chk1-ABO inhibi-
tor complex suggests that, like the cyclohexane group in PV1352,
unfavorable non-polar–polar interactions between the isopropyl
moiety of PV1162 and Asn59 in Chk1 along with an accompanying
steric clash probably explains why PV1162 has minimal activity
against Chk1. (Fig. 3d).
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In summary, we have shown that despite the high degree of se-
quence identity in the ATP binding pockets of Chk1 and Chk2,
information gleaned from co-crystal structures of enzyme-inhibi-
tor complexes can be exploited for the rational design of highly
specific inhibitors. Targeting the GDHP may be a particularly effec-
tive way to improve the specificity of Chk2 inhibitors. The struc-
tures of the inhibitor complexes described here illustrate that the
key structural determinants for the binding of these compounds
include a combination of water-mediated and direct hydrogen
bonding to the hinge region, ionic and hydrogen bonding interac-
tions with Glu273 that are mediated by the terminal guani-
dinohydrazone, and hydrophobic binding interactions with the
GDHP. In addition, the structures establish a framework for further
optimization of the chemical scaffold in the hinge binding region
and suggest that the guanidinohydrazone moiety could be replaced
with a more favorable drug-like fragment that retains interactions
with Glu273. However, prior to further optimization of these inhib-
itors, it will be important to evaluate their pharmacological prop-
erties in cell culture [21] to determine their antiproliferative
activity as single agents in cancer cells with endogenous Chk2 acti-
vation [13,21] and their synergism with DNA damaging agents in
normal and p53-deficient cells [12]. The Chk2 inhibitor PV1019
meets all of these criteria [21] and we anticipate that its deriva-
tives described here, which have been modified to target the GDHP,
will perform similarly.
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