124 research outputs found
Structural studies of ribosome stalling and translocation complexes
In this study, cryo-electron microscopy (cryo-EM) and single particle reconstruction were used as a main technique to investigate the involvement of bacterial ribosomes in two crucial cellular processes: the regulation of gene expression and the biogenesis of membrane proteins.
Whereas most nascent chains are thought to transit passively through the ribosomal exit tunnel during translation, a number of regulatory peptide sequences, such as TnaC and SecM, have been proposed to specifically interact with tunnel components, causing the ribosome to stall which in turn regulates the expression of downstream gene products. In the first part of this study, a 5.8 Å resolution cryo-EM reconstruction of an Escherichia coli 70S ribosome stalled during translation of the TnaC leader peptide could be determined. The high quality of the map allowed the visualization of the TnaC nascent chain within the exit tunnel of the ribosome, making contacts with ribosomal components at distinct sites. At the peptidyl transferase center (PTC), the universally conserved nucleotides A2602 and U2585 adopt conformations that are incompatible with co-habitation of the termination release factors. Moreover, a model could be proposed where interactions within the tunnel are relayed back to the PTC, leading to its inactivation. In addition, a foundation for the elucidation of the SecM-stalling mechanism could also be established.
The membrane protein insertase YidC is the prokaryotic member of the conserved YidC/Oxa1/Alb3 protein family. It assists in the assembly and folding of membrane proteins in conjunction with the Sec translocase as well as on its own. E. coli YidC is a hexaspan protein with a large, non-conserved periplasmic domain between the first and second transmembrane (TM) segment. In contrast, YidC2 from the Gram-positive bacterium Streptococcus mutans contains five TM segments and an extended C-terminal region akin to the C-terminal ribosome binding domain of the mitochondrial YidC homolog Oxa1. In the second part of this study, programmed 70S ribosomes carrying the YidC-specific nascent chain MscL could be generated, and visualized in a preliminary low-resolution cryo-EM structure in complex with E. coli YidC. Furthermore, purified S. mutans YidC2 was reconstituted into proteoliposomes and the formation of a ribosome-YidC2-proteoliposome complex could be demonstrated. Thus, the foundations have been laid for the visualization of YidC2 in the membrane environment. Improvement of the preliminary RNC-YidC structure together with determination of an RNC-YidC2 complex are expected to provide insights into the molecular mechanism of YidC mediated membrane protein biogenesis
A structural model of the active ribosome-bound membrane protein insertase YidC
The integration of most membrane proteins into the cytoplasmic membrane of bacteria occurs co-translationally. The universally conserved YidC protein mediates this process either individually as a membrane protein insertase, or in concert with the SecY complex. Here, we present a structural model of YidC based on evolutionary co-variation analysis, lipid-versus-protein-exposure and molecular dynamics simulations. The model suggests a distinctive arrangement of the conserved five transmembrane domains and a helical hairpin between transmembrane segment 2 (TM2) and TM3 on the cytoplasmic membrane surface. The model was used for docking into a cryo-electron microscopy reconstruction of a translating YidC-ribosome complex carrying the YidC substrate F(O)c. This structure reveals how a single copy of YidC interacts with the ribosome at the ribosomal tunnel exit and identifies a site for membrane protein insertion at the YidC protein-lipid interface. Together, these data suggest a mechanism for the co-translational mode of YidC-mediated membrane protein insertion
Protein folding on the ribosome studied using NMR spectroscopy
NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome-nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity
SecM-Stalled Ribosomes Adopt an Altered Geometry at the Peptidyl Transferase Center
A structure of a ribosome stalled during translation of the SecM peptide provides insight into the mechanism by which the large subunit active site is inactivated
Polytopic membrane protein folding at L17 in the ribosome tunnel initiates cyclical changes at the translocon
Interaction between L17 in the ribosome tunnel and folded nascent chain transmembrane segments during multi-spanning membrane protein synthesis triggers structural rearrangements in the ribosome that cause switching between cytosolic and ER lumenal targeting of the growing polypeptide
Crucial elements that maintain the interactions between the regulatory TnaC peptide and the ribosome exit tunnel responsible for Trp inhibition of ribosome function
Translation of the TnaC nascent peptide inhibits ribosomal activity in the presence of l-tryptophan, inducing expression of the tnaCAB operon in Escherichia coli. Using chemical methylation, this work reveals how interactions between TnaC and the ribosome are affected by mutations in both molecules. The presence of the TnaC-tRNAPro peptidyl-tRNA within the ribosome protects the 23S rRNA nucleotide U2609 against chemical methylation. Such protection was not observed in mutant ribosomes containing changes in 23S rRNA nucleotides of the A748–A752 region. Nucleotides A752 and U2609 establish a base-pair interaction. Most replacements of either A752 or U2609 affected Trp induction of a TnaC-regulated LacZ reporter. However, the single change A752G, or the dual replacements A752G and U2609C, maintained Trp induction. Replacements at the conserved TnaC residues W12 and D16 also abolished the protection of U2609 by TnaC-tRNAPro against chemical methylation. These data indicate that the TnaC nascent peptide in the ribosome exit tunnel interacts with the U2609 nucleotide when the ribosome is Trp responsive. This interaction is affected by mutational changes in exit tunnel nucleotides of 23S rRNA, as well as in conserved TnaC residues, suggesting that they affect the structure of the exit tunnel and/or the nascent peptide configuration in the tunnel
Two groups of phenylalanine biosynthetic operon leader peptides genes: a high level of apparently incidental frameshifting in decoding Escherichia coli pheL
The bacterial pheL gene encodes the leader peptide for the phenylalanine biosynthetic operon. Translation of pheL mRNA controls transcription attenuation and, consequently, expression of the downstream pheA gene. Fifty-three unique pheL genes have been identified in sequenced genomes of the gamma subdivision. There are two groups of pheL genes, both of which are short and contain a run(s) of phenylalanine codons at an internal position. One group is somewhat diverse and features different termination and 5′-flanking codons. The other group, mostly restricted to Enterobacteria and including Escherichia coli pheL, has a conserved nucleotide sequence that ends with UUC_CCC_UGA. When these three codons in E. coli pheL mRNA are in the ribosomal E-, P- and A-sites, there is an unusually high level, 15%, of +1 ribosomal frameshifting due to features of the nascent peptide sequence that include the penultimate phenylalanine. This level increases to 60% with a natural, heterologous, nascent peptide stimulator. Nevertheless, studies with different tRNAPro mutants in Salmonella enterica suggest that frameshifting at the end of pheL does not influence expression of the downstream pheA. This finding of incidental, rather than utilized, frameshifting is cautionary for other studies of programmed frameshifting
Nascentome Analysis Uncovers Futile Protein Synthesis in Escherichia coli
Although co-translational biological processes attract much attention, no general and easy method has been available to detect cellular nascent polypeptide chains, which we propose to call collectively a “nascentome.” We developed a method to selectively detect polypeptide portions of cellular polypeptidyl-tRNAs and used it to study the generality of the quality control reactions that rescue dead-end translation complexes. To detect nascent polypeptides, having their growing ends covalently attached to a tRNA, cellular extracts are separated by SDS-PAGE in two dimensions, first with the peptidyl-tRNA ester bonds preserved and subsequently after their in-gel cleavage. Pulse-labeled nascent polypeptides of Escherichia coli form a characteristic line below the main diagonal line, because each of them had contained a tRNA of nearly uniform size in the first-dimension electrophoresis but not in the second-dimension. The detection of nascent polypeptides, separately from any translation-completed polypeptides or degradation products thereof, allows us to follow their fates to gain deeper insights into protein biogenesis and quality control pathways. It was revealed that polypeptidyl-tRNAs were significantly stabilized in E. coli upon dysfunction of the tmRNA-ArfA ribosome-rescuing system, whose function had only been studied previously using model constructs. Our results suggest that E. coli cells are intrinsically producing aberrant translation products, which are normally eliminated by the ribosome-rescuing mechanisms
Non-Bulk-Like Solvent Behavior in the Ribosome Exit Tunnel
As nascent proteins are synthesized by the ribosome, they depart via an exit tunnel running through the center of the large subunit. The exit tunnel likely plays an important part in various aspects of translation. Although water plays a key role in many bio-molecular processes, the nature of water confined to the exit tunnel has remained unknown. Furthermore, solvent in biological cavities has traditionally been characterized as either a continuous dielectric fluid, or a discrete tightly bound molecule. Using atomistic molecular dynamics simulations, we predict that the thermodynamic and kinetic properties of water confined within the ribosome exit tunnel are quite different from this simple two-state model. We find that the tunnel creates a complex microenvironment for the solvent resulting in perturbed rotational dynamics and heterogenous dielectric behavior. This gives rise to a very rugged solvation landscape and significantly retarded solvent diffusion. We discuss how this non-bulk-like solvent is likely to affect important biophysical processes such as sequence dependent stalling, co-translational folding, and antibiotic binding. We conclude with a discussion of the general applicability of these results to other biological cavities
- …