123 research outputs found
Complex transboundary movements of marine megafauna in the Western Indian Ocean
Transboundary marine species have an increased risk of overexploitation as management regimes and enforcement can vary among states. The complex geopolitical layout of exclusive economic zones (EEZs) in the Western Indian Ocean (WIO) introduces the potential for migratory species to cross multiple boundaries, consequently a lack of scientific data could complicate regional management. In the current study, we highlight both the relative lack of spatial data available in the WIO, and the prevalence of transboundary movements in species that have previously been studied in the region. Five tiger sharks Galeocerdo cuvier were tracked with near real‐time positioning (SPOT) satellite tags to determine individual shark movements relative to EEZs within the WIO. Concurrently, a literature search was performed to identify all satellite telemetry studies conducted to date in the WIO for marine megafaunal species, and the results compared to global satellite telemetry effort. Finally, the satellite tracks of all marine species monitored in the WIO were extracted and digitized to examine the scale of transboundary movements that occur in the region. Tiger sharks exhibited both coastal and oceanic movements, with one individual crossing a total of eight EEZs. Satellite telemetry effort in the WIO has not matched the global increase, with only 4.7% of global studies occurring in the region. Species in the WIO remained within the EEZ in which they were tagged in only three studies, while all other species demonstrated some level of transboundary movement. This study demonstrates the lack of spatial data available for informed regional management in an area where transboundary movements by marine megafauna are highly prevalent. Without more dedicated funding and research, the rich biodiversity of the WIO is at risk of overexploitation from the diverse threats present within the various political regions
Enhancing public awareness and promoting co-responsibility for marine litter in Europe: The challenge of MARLISCO
Marine litter is a pervasive and complex societal problem but has no simple solution. Inadequate practices at all levels of production–use–disposal contribute to accumulation of waste on land and at sea. Enhanced societal awareness but also co-responsibility across different sectors and improved interactions between stakeholders are necessary.
MARLISCO was a European initiative, which developed and implemented activities across 15 countries. It worked towards raising societal awareness and engagement on marine litter, through a combination of approaches: public exhibitions in over 80 locations; a video competition involving 2100 students; and a legacy of educational and decision-supporting tools. 12 national participatory events designed to facilitate dialogue on solutions brought together 1500 stakeholders and revealed support for cross-cutting, preventive measures. Evaluation during implementation shows that these activities are effective in improving individuals' perceptions about the problem but also commitment in being part of the solution. This paper summarises MARLISCO's approach and highlights a selection of outcomes
Levers and leverage points for pathways to sustainability
Humanity is on a deeply unsustainable trajectory. We are exceeding planetary boundaries and unlikely to meet many international sustainable development goals and global environmental targets. Until recently, there was no broadly accepted framework of interventions that could ignite the transformations needed to achieve these desired targets and goals. As a component of the IPBES Global Assessment, we conducted an iterative expert deliberation process with an extensive review of scenarios and pathways to sustainability, including the broader literature on indirect drivers, social change and sustainability transformation. We asked, what are the most important elements of pathways to sustainability? Applying a social–ecological systems lens, we identified eight priority points for intervention (leverage points) and five overarching strategic actions and priority interventions (levers), which appear to be key to societal transformation. The eight leverage points are: (1) Visions of a good life, (2) Total consumption and waste, (3) Latent values of responsibility, (4) Inequalities, (5) Justice and inclusion in conservation, (6) Externalities from trade and other telecouplings, (7) Responsible technology, innovation and investment, and (8) Education and knowledge generation and sharing. The five intertwined levers can be applied across the eight leverage points and more broadly. These include: (A) Incentives and capacity building, (B) Coordination across sectors and jurisdictions, (C) Pre-emptive action, (D) Adaptive decision-making and (E) Environmental law and implementation. The levers and leverage points are all non-substitutable, and each enables others, likely leading to synergistic benefits. Transformative change towards sustainable pathways requires more than a simple scaling-up of sustainability initiatives—it entails addressing these levers and leverage points to change the fabric of legal, political, economic and other social systems. These levers and leverage points build upon those approved within the Global Assessment's Summary for Policymakers, with the aim of enabling leaders in government, business, civil society and academia to spark transformative changes towards a more just and sustainable world. A free Plain Language Summary can be found within the Supporting Information of this article.Fil: Chan, Kai M. A.. University of British Columbia; CanadáFil: Boyd, David R.. University of British Columbia; CanadáFil: Gould, Rachelle. University of Vermont; Estados UnidosFil: Jetzkowitz, Jens. Staatliches Museum fur Naturkunde Stuttgart; AlemaniaFil: Liu, Jianguo. Michigan State University; Estados UnidosFil: Muraca, Bárbara. University of Oregon; Estados UnidosFil: Naidoo, Robin. University of British Columbia; CanadáFil: Beck, Paige. University of British Columbia; CanadáFil: Satterfield, Terre. University of British Columbia; CanadáFil: Selomane, Odirilwe. Stellenbosch University; SudáfricaFil: Singh, Gerald G.. University of British Columbia; CanadáFil: Sumaila, Rashid. University of British Columbia; CanadáFil: Ngo, Hien T.. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; AlemaniaFil: Boedhihartono, Agni Klintuni. University of British Columbia; CanadáFil: Agard, John. The University Of The West Indies; Trinidad y TobagoFil: de Aguiar, Ana Paula D.. Stockholms Universitet; SueciaFil: Armenteras, Dolors. Universidad Nacional de Colombia; ColombiaFil: Balint, Lenke. BirdLife International; Reino UnidoFil: Barrington-Leigh, Christopher. Mcgill University; CanadáFil: Cheung, William W. L.. University of British Columbia; CanadáFil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Driscoll, John. University of British Columbia; CanadáFil: Esler, Karen. Stellenbosch University; SudáfricaFil: Eyster, Harold. University of British Columbia; CanadáFil: Gregr, Edward J.. University of British Columbia; CanadáFil: Hashimoto, Shizuka. The University Of Tokyo; JapónFil: Hernández Pedraza, Gladys Cecilia. The World Economy Research Center; CubaFil: Hickler, Thomas. Goethe Universitat Frankfurt; AlemaniaFil: Kok, Marcel. PBL Netherlands Environmental Assessment Agency; Países BajosFil: Lazarova, Tanya. PBL Netherlands Environmental Assessment Agency; Países BajosFil: Mohamed, Assem A. A.. Central Laboratory for Agricultural Climate; EgiptoFil: Murray-Hudson, Mike. University Of Botswana; BotsuanaFil: O'Farrell, Patrick. University of Cape Town; SudáfricaFil: Palomo, Ignacio. Basque Centre for Climate Change; EspañaFil: Saysel, Ali Kerem. Boğaziçi University; TurquíaFil: Seppelt, Ralf. Martin-universität Halle-wittenberg; AlemaniaFil: Settele, Josef. German Centre for Integrative Biodiversity Research-iDiv; AlemaniaFil: Strassburg, Bernardo. International Institute for Sustainability, Estrada Dona Castorina; BrasilFil: Xue, Dayuan. Minzu University Of China; ChinaFil: Brondízio, Eduardo S.. Indiana University; Estados Unido
Insect threats and conservation through the lens of global experts
While several recent studies have focused on global insect population trends, all are limited in either space or taxonomic scope. As global monitoring programs for insects are currently not implemented, inherent biases exist within most data. Expert opinion, which is often widely available, proves to be a valuable tool where hard data are limited. Our aim is to use global expert opinion to provide insights on the root causes of potential insect declines worldwide, as well as on effective conservation strategies that could mitigate insect biodiversity loss. We obtained 753 responses from 413 respondents with a wide variety of spatial and taxonomic expertise. The most relevant threats identified through the survey were agriculture and climate change, followed by pollution, while land management and land protection were recognized as the most significant conservation measures. Nevertheless, there were differences across regions and insect groups, reflecting the variability within the most diverse class of eukaryotic organisms on our planet. Lack of answers for certain biogeographic regions or taxa also reflects the need for research in less investigated settings. Our results provide a novel step toward understanding global threats and conservation measures for insects.Peer reviewe
Natural archives of long-range transported contamination at the remote lake Letšeng-la Letsie, Maloti Mountains, Lesotho
Naturally accumulating archives, such as lake sediments and wetland peats, in remote areas may be used to identify the scale and rates of atmospherically deposited pollutant inputs to natural ecosystems. Co-located lake sediment and wetland cores were collected from Letšeng-la Letsie, a remote lake in the Maloti Mountains of southern Lesotho. The cores were radiometrically dated and analysed for a suite of contaminants including trace metals and metalloids (Hg, Pb, Cu, Ni, Zn, As), fly-ash particles, stable nitrogen isotopes, polycyclic aromatic hydrocarbons (PAHs) and persistent organic pollutants such as polychlorinated biphenyls (PCBs), polybrominated flame retardants (PBDEs) and hexachlorobenzene (HCB). While most trace metals showed no recent enrichment, mercury, fly-ash particles, high molecular weight PAHs and total PCBs showed low but increasing levels of contamination since c.1970, likely the result of long-range transport from coal combustion and other industrial sources in the Highveld region of South Africa. However, back-trajectory analysis revealed that atmospheric transport from this region to southern Lesotho is infrequent and the scale of contamination is low. To our knowledge, these data represent the first palaeolimnological records and the first trace contaminant data for Lesotho, and one of the first multi-pollutant historical records for southern Africa. They therefore provide a baseline for future regional assessments in the context of continued coal combustion in South Africa through to the mid-21st century
Is it Fair to Treat China as a Christmas Tree to Hang Everybody’s Complaints? Putting its Own Energy Saving into Perspective
China had been the world’s second largest carbon emitter for years. Recent studies show that China had overtaken the U.S. as the world’s largest emitter in 2007. This has put China on the spotlight, just at a time when the world community starts negotiating a post-Kyoto climate regime under the Bali Roadmap. China seems to become such a Christmas tree on which everybody can hang his/her complaints. This paper first discusses whether such a critics is fair by examining China’s own efforts towards energy saving, the widespread use of renewable energy and participation in clean development mechanism. Next, the paper puts carbon reductions of China’s unilateral actions into perspective by examining whether the estimated greenhouse gas emission reduction from meeting the country’s national energy saving goal is achieved from China’s unilateral actions or mainly with support from the clean development mechanism projects. Then the paper discusses how far developing country commitments can go in an immediate post-2012 climate regime, thus pointing out the direction and focus of future international climate negotiations. Finally, emphasizing that China needs to act as a large and responsible developing country and take due responsibilities and to set a good example to the majority of developing countries, the paper articulates what can be expected from China to illustrate that China can be a good partner in combating global climate change
- …