82 research outputs found

    Upscaling nitrogen removal capacity from local hotspots to low stream orders’ drainage basins

    Get PDF
    International audienceDenitrification is the main process removing nitrate in river drainage basins and buffer input from agricultural land and limits aquatic ecosystem pollution. However, the identification of denitrification hotspots (for example, riparian zones), their role in a landscape context and the evolution oftheir overall removal capacity at the drainage basin scale are still challenging. The main approaches used (that is, mass balance method, denitrification proxies, and potential wetted areas) suffer from methodological drawbacks. We review these approaches and the key frameworks that have been proposed to date to formalize the understanding of the mechanisms driving denitrification: (i) Diffusion versus advection pathways of nitrate transfer, (ii) the biogeochemical hotspot, and (iii) the Damköhler ratio. Based on these frameworks, we propose to use high-resolution mapping of catchment topography and landscape pattern to define both potential denitrification sites and the dynamic hydrologic modeling at a similar spatial scale (<10 km2). It would allow the quantification of cumulative denitrification activity at the small catchment scale, using spatially distributed Damköhler and Peclet numbers and biogeochemical proxies. Integration of existing frameworks with new tools and methods offers the potential for significant breakthroughs in the quantification and modeling of denitrification in small drainage basins. This can provide a basis for improved protection and restoration of surface water and groundwater quality

    Spatial distribution of PAH concentrations and stable isotope signatures (δ13C, δ15N) in mosses from three European areas – Characterization by multivariate analysis

    Get PDF
    Polycyclic aromatic hydrocarbon (PAH) concentrations and N, C stable isotope signatures were determined in mosses Hypnum cupressiforme Hedw. from 61 sites of 3 European regions: Île-de-France (France); Navarra (Spain); the Swiss Plateau and Basel area (Switzerland). Total PAH concentrations of 100-700 ng g-1, as well as δ13C values of -32 to -29‰ and δ15N values of -11 to -3‰ were measured. Pearson correlation tests revealed opposite trends between high molecular weight PAH (4-6 aromatic rings) content and δ13C values. Partial Least Square regressions explained the very significant correlations (r > 0.91, p < 0.001) between high molecular weight PAH concentrations by local urban land use (<10 km) and environmental factors such as elevation and pluviometry. Finally, specific correlations between heavy metal and PAH concentrations were attributed to industrial emissions in Switzerland and road traffic emissions in Spain

    Integrated climate-chemical indicators of diffuse pollution from land to water

    Get PDF
    Management of agricultural diffuse pollution to water remains a challenge and is influenced by the complex interactions of rainfall-runoff pathways, soil and nutrient management, agricultural landscape heterogeneity and biogeochemical cycling in receiving water bodies. Amplified cycles of weather can also influence nutrient loss to water although they are less considered in policy reviews. Here, we present the development of climate-chemical indicators of diffuse pollution in highly monitored catchments in Western Europe. Specifically, we investigated the influences and relationships between weather processes amplified by the North Atlantic Oscillation during a sharp upward trend (20102016) and the patterns of diffuse nitrate and phosphorus pollution in rivers. On an annual scale, we found correlations between local catchment-scale nutrient concentrations in rivers and the influence of larger, oceanic-scale climate patterns defined by the intensity of the North Atlantic Oscillation. These influences were catchment-specific showing positive, negative or no correlation according to a typology. Upward trends in these decadal oscillations may override positive benefits of local management in some years or indicate greater benefits in other years. Developing integrated climate-chemical indicators into catchment monitoring indicators will provide a new and important contribution to water quality management objectives

    The role of organisms in hyporheic processes : gaps in current knowledge, needs for future research and applications

    Get PDF
    Fifty years after the hyporheic zone was first defined (Orghidan, 1959), there are still gaps in the knowledge regarding the role of biodiversity in hyporheic processes. First, some methodological questions remained unanswered regarding the interactions between biodiversity and physical processes, both for the study of habitat characteristics and interactions at different scales. Furthermore, many questions remain to be addressed to help inform our understanding of invertebrate community dynamics, especially regarding the trophic niches of organisms, the functional groups present within sediment, and their temporal changes. Understanding microbial community dynamics would require investigations about their relationship with the physical characteristics of the sediment, their diversity, their relationship with metabolic pathways, their inter- actions with invertebrates, and their response to environmental stress. Another fundamental research question is that of the importance of the hyporheic zone in the global metabolism of the river, which must be explored in relation to organic matter recycling, the effects of disturbances, and the degradation of contaminants. Finally, the application of this knowledge requires the development of methods for the estimation of hydro- logical exchanges, especially for the management of sediment clogging, the optimization of self-purification, and the integration of climate change in environmental policies. The development of descriptors of hyporheic zone health and of new metrology is also crucial to include specific targets in water policies for the long-term management of the system and a clear evaluation of restoration strategies

    Influence of Lag Effect, Soil Release, And Climate Change on Watershed Anthropogenic Nitrogen Inputs and Riverine Export Dynamics

    Full text link
    This study demonstrates the importance of the nitrogen-leaching lag effect, soil nitrogen release, and climate change on anthropogenic N inputs (NANI) and riverine total nitrogen (TN) export dynamics using a 30-yr record for the Yongan River watershed in eastern China. Cross-correlation analysis indicated a 7-yr, 5-yr, and 4-yr lag time in riverine TN export in response to changes in NANI, temperature, and drained agricultural land area, respectively. Enhanced by warmer temperature and improved agricultural drainage, the upper 20 cm of agricultural soils released 270 kg N ha(-1) between 1980 and 2009. Climate change also increased the fractional export of NANI to river. An empirical model (R(2) = 0.96) for annual riverine TN flux incorporating these influencing factors estimated 35%, 41%, and 24% of riverine TN flux originated from the soil N pool, NANI, and background N sources, respectively. The model forecasted an increase of 45%, 25%, and 6% and a decrease of 13% in riverine TN flux from 2010 to 2030 under continued development, climate change, status-quo, and tackling scenarios, respectively. The lag effect, soil N release, and climate change delay riverine TN export reductions with respect to decreases in NANI and should be considered in developing and evaluating N management measures

    Identification of the nitrate contamination sources of the Brusselian sands groundwater body (Belgium) using a dual isotope approach : Isotopes in environmental and health studies

    No full text
    Isotopic fingerprinting is an advanced technique allowing the classification of the nitrate source pollution of groundwater, but needs further development and validation. In this study, we performed measurements of natural stable isotopic composition of nitrate ((15)N and (18)O) in the groundwater body of the Brussels sands (Belgium) and studied the spatial and temporal dynamics of the isotope signature of this aquifer. Potential nitrogen sources sampled in the region had isotopic signatures that fell within the corresponding typical ranges found in the literature. For a few monitoring stations, the isotopic data strongly suggest that the sources of nitrate are from mineral fertiliser origin, as used in agriculture and golf courses. Other stations suggest that manure leaching from unprotected stockpiles in farms, domestic gardening practices, septic tanks and probably cemeteries contribute to the nitrate pollution of this groundwater body. For most monitoring stations, nitrate originates from a mixing of several nitrogen sources. The isotopic signature of the groundwater body was poorly structured in space, but exhibited a clear temporal structure. This temporal structure could be explained by groundwater recharge dynamics and cycling process of nitrogen in the soil-nitrogen pool

    Long term analysis of N2O emission from partial nitritation anammox process under oxygen limitation

    No full text
    International audiencePartial nitritation with anammox (PNA) process was achieved during 300 days to investigate the fate of N2O and NO. N2O emission factor increased from 0.4 ± 0.1 % up to 6.1 ± 0.3 % during intensification phase of 5 months and progressively stabilized at 2.0 ± 0.1 % after 10 months without any significant emission of NO. The emission of N2O correlated with the ammonium consumption rate and the oxygen transfer rate. Experiment carried out in anoxic condition suggested that heterotrophic denitrification poorly contributed. Measurements of δ15N, δ18O and SP of N2O demonstrated that its production resulted from the reduction of nitrite. The stimulating effect of nitrite on N2O production was demonstrated with specific tests and observed during transient nitrite accumulation periods. This study highlighted the importance of nitrite and oxygen transfer rate control for future control strategies aiming to mitigate N2O emission in PNA system

    Analytical pitfalls when using inhibitors in specific nitrification assays

    No full text
    International audienceCharacterisation of the reaction steps involved in nitrification can help determine the processes that produce potentially harmful environmental pollutants such as nitrite, nitrate and nitrous oxide (N2O). The use of nitrification inhibitors can uncouple the reactions and therefore assist in their mechanistic and isotopic characterisation. However, nitrification inhibitors can interfere with the methods for determining the concentrations and stable isotope ratios of ammonium, nitrite and nitrate. The interference of allylthiourca, hydrazine or sodium chlorate in colorimetric methods and stable isotope measurements were assessed. Ammonium concentrations were measured with the salicylate method. Nitrite and nitrate were measured with the Griess reaction, with nitrate first being reduced to nitrite with vanadium (III) chloride. For the stable isotope analysis, nitrite was reduced to N2O in a 1 : 1 sodium azide and acetic acid buffer solution; preceded, when necessary, by ammonium oxidation to nitrite by hypobromite or nitrate reduction to nitrite on an activated cadmium column. Sodium chlorate did not interfere with any of the analyses and none of the inhibitors interfered with the stable isotope ratios determination of nitrate. Allylthiourea interfered with ammonium and nitrate quantification. Both allylthiourea and hydrazine also clearly interfered in the determination of the nitrogen stable isotope ratio of ammonium, while only allylthiourea interfered in the determination of nitrogen and oxygen stable isotope ratios of nitrite. Although we suggest methods to overcome some of these interferences, our study demonstrated that the analytical methods used in combination with allylthiourea or hydrazine as nitrification inhibitors should be considered with caution when designing experiments
    corecore