77 research outputs found

    Disinfection By-Products in Drinking Water and Bladder Cancer:Evaluation of Risk Modification by Common Genetic Polymorphisms in Two Case-Control Studies

    Get PDF
    BACKGROUND: By-products are formed when disinfectants react with organic matter in source water. The most common class of disinfection by-products, trihalomethanes (THMs), have been linked to bladder cancer. Several studies have shown exposure–response associations with THMs in drinking water and bladder cancer risk. Few epidemiologic studies have evaluated gene–environment interactions for total THMs (TTHMs) with known bladder cancer susceptibility variants. OBJECTIVES: In this study, we investigated the combined effect on bladder cancer risk contributed by TTHMs, bladder cancer susceptibility variants identified through genome-wide association studies, and variants in several candidate genes. METHODS: We analyzed data from two large case–control studies—the New England Bladder Cancer Study ([Formula: see text] cases/1,162 controls), a population-based study, and the Spanish Bladder Cancer Study ([Formula: see text] cases/772 controls), a hospital-based study. Because of differences in exposure distributions and metrics, we estimated effects of THMs and genetic variants within each study separately using adjusted logistic regression models to calculate odds ratios (ORs) and 95% confidence intervals (CI) with and without interaction terms, and then combined the results using meta-analysis. RESULTS: Of the 16 loci showing strong evidence of association with bladder cancer, rs907611 at 11p15.5 [leukocyte-specific protein 1 (LSP1 region)] showed the strongest associations in the highest exposure category in each study, with evidence of interaction in both studies and in meta-analysis. In the highest exposure category, we observed [Formula: see text] (95% CI: 1.17, 2.34, [Formula: see text]) for those with the rs907611-GG genotype and [Formula: see text]. No other genetic variants tested showed consistent evidence of interaction. DISCUSSION: We found novel suggestive evidence for a multiplicative interaction between a putative bladder carcinogen, TTHMs, and genotypes of rs907611. Given the ubiquitous exposure to THMs, further work is needed to replicate and extend this finding and to understand potential molecular mechanisms. https://doi.org/10.1289/EHP989

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    Large-Scale Pathway-Based Analysis of Bladder Cancer Genome-Wide Association Data from Five Studies of European Background

    Get PDF
    Pathway analysis of genome-wide association studies (GWAS) offer a unique opportunity to collectively evaluate genetic variants with effects that are too small to be detected individually. We applied a pathway analysis to a bladder cancer GWAS containing data from 3,532 cases and 5,120 controls of European background (n = 5 studies). Thirteen hundred and ninety-nine pathways were drawn from five publicly available resources (Biocarta, Kegg, NCI-PID, HumanCyc, and Reactome), and we constructed 22 additional candidate pathways previously hypothesized to be related to bladder cancer. In total, 1421 pathways, 5647 genes and ∼90,000 SNPs were included in our study. Logistic regression model adjusting for age, sex, study, DNA source, and smoking status was used to assess the marginal trend effect of SNPs on bladder cancer risk. Two complementary pathway-based methods (gene-set enrichment analysis [GSEA], and adapted rank-truncated product [ARTP]) were used to assess the enrichment of association signals within each pathway. Eighteen pathways were detected by either GSEA or ARTP at P≤0.01. To minimize false positives, we used the I2 statistic to identify SNPs displaying heterogeneous effects across the five studies. After removing these SNPs, seven pathways (‘Aromatic amine metabolism’ [PGSEA = 0.0100, PARTP = 0.0020], ‘NAD biosynthesis’ [PGSEA = 0.0018, PARTP = 0.0086], ‘NAD salvage’ [PARTP = 0.0068], ‘Clathrin derived vesicle budding’ [PARTP = 0.0018], ‘Lysosome vesicle biogenesis’ [PGSEA = 0.0023, PARTP<0.00012], ’Retrograde neurotrophin signaling’ [PGSEA = 0.00840], and ‘Mitotic metaphase/anaphase transition’ [PGSEA = 0.0040]) remained. These pathways seem to belong to three fundamental cellular processes (metabolic detoxification, mitosis, and clathrin-mediated vesicles). Identification of the aromatic amine metabolism pathway provides support for the ability of this approach to identify pathways with established relevance to bladder carcinogenesis

    Genome-wide Association Study of Bladder Cancer Reveals New Biological and Translational Insights

    Get PDF
    BACKGROUND: Genomic regions identified by genome-wide association studies (GWAS) for bladder cancer risk provide new insights into etiology. OBJECTIVE: To identify new susceptibility variants for bladder cancer in a meta-analysis of new and existing genome-wide genotype data. DESIGN, SETTING, AND PARTICIPANTS: Data from 32 studies that includes 13,790 bladder cancer cases and 343,502 controls of European ancestry were used for meta-analysis. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSES: Log-additive associations of genetic variants were assessed using logistic regression models. A fixed-effects model was used for meta-analysis of the results. Stratified analyses were conducted to evaluate effect modification by sex and smoking status. A polygenic risk score (PRS) was generated on the basis of known and novel susceptibility variants and tested for interaction with smoking. RESULTS AND LIMITATIONS: Multiple novel bladder cancer susceptibility loci (6p.22.3, 7q36.3, 8q21.13, 9p21.3, 10q22.1, 19q13.33) as well as improved signals in three known regions (4p16.3, 5p15.33, 11p15.5) were identified, bringing the number of independent markers at genome-wide significance (p \u3c 5 × 10 CONCLUSIONS: We report novel loci associated with risk of bladder cancer that provide clues to its biological underpinnings. Using 24 independent markers, we constructed a PRS to stratify lifetime risk. The PRS combined with smoking history, and other established risk factors, has the potential to inform future screening efforts for bladder cancer. PATIENT SUMMARY: We identified new genetic markers that provide biological insights into the genetic causes of bladder cancer. These genetic risk factors combined with lifestyle risk factors, such as smoking, may inform future preventive and screening strategies for bladder cancer

    Identification of a novel susceptibility locus at 13q34 and refinement of the 20p12.2 region as a multi-signal locus associated with bladder cancer risk in individuals of european ancestry

    Get PDF
    Candidate gene and genome-wide association studies (GWAS) have identified 15 independent genomic regions associated with bladder cancer risk. In search for additional susceptibility variants, we followed up on four promising single-nucleotide polymorphisms (SNPs) that had not achieved genome-wide significance in 6911 cases and 11 814 controls (rs6104690, rs4510656, rs5003154 and rs4907479, P &lt; 1 7 10(-6)), using additional data from existing GWAS datasets and targeted genotyping for studies that did not have GWAS data. In a combined analysis, which included data on up to 15 058 cases and 286 270 controls, two SNPs achieved genome-wide statistical significance: rs6104690 in a gene desert at 20p12.2 (P = 2.19 7 10(-11)) and rs4907479 within the MCF2L gene at 13q34 (P = 3.3 7 10(-10)). Imputation and fine-mapping analyses were performed in these two regions for a subset of 5551 bladder cancer cases and 10 242 controls. Analyses at the 13q34 region suggest a single signal marked by rs4907479. In contrast, we detected two signals in the 20p12.2 region-the first signal is marked by rs6104690, and the second signal is marked by two moderately correlated SNPs (r(2) = 0.53), rs6108803 and the previously reported rs62185668. The second 20p12.2 signal is more strongly associated with the risk of muscle-invasive (T2-T4 stage) compared with non-muscle-invasive (Ta, T1 stage) bladder cancer (case-case P 64 0.02 for both rs62185668 and rs6108803). Functional analyses are needed to explore the biological mechanisms underlying these novel genetic associations with risk for bladder cancer

    Identification of a novel susceptibility locus at 13q34 and refinement of the 20p12.2 region as a multi-signal locus associated with bladder cancer risk in individuals of european ancestry

    Get PDF

    Identification and replication of the interplay of four genetic high risk variants for urinary bladder cancer

    Get PDF
    Little is known whether genetic variants identified in genome-wide association studies interact to increase bladder cancer risk. Recently, we identified two- and three-variant combinations associated with a particular increase of bladder cancer risk in a urinary bladder cancer case-control series (IfADo, 1501 cases, 1565 controls). In an independent case-control series (Nijmegen Bladder Cancer Study, NBCS, 1468 cases, 1720 controls) we confirmed these two- and three-variant combinations. Pooled analysis of the two studies as discovery group (IfADo-NBCS) resulted in sufficient statistical power to test up to four-variant combinations by a logistic regression approach. The New England and Spanish Bladder Cancer Studies (2080 cases and 2167 controls) were used as a replication series. Twelve previously identified risk variants were considered.The strongest four-variant combination was obtained in never smokers. The combination of rs1014971[AA] near APOBEC3A and CBX6, SLC14A1 exon SNP rs1058396[AG,GG], UGT1A intron SNP rs11892031[AA], and rs8102137[CC,CT] near CCNE resulted in an unadjusted odds ratio of 2.59 (95% CI = 1.93-3.47; P = 1.87x10-10), while the individual variant odds ratios ranged only between 1.11-1.30. The combination replicated in the New England and Spanish bladder Cancer Studies (ORunadjusted=1.60, 95% CI = 1.10-2.33; P = 0.013). The four-variant combination is relatively frequent, with 25% in never smoking cases and 11% in never smoking controls (total study group: 19% cases, 14% controls). In conclusion, we show that four high risk variants can statistically interact to confer increased bladder cancer risk particularly in never smokers

    Detectable clonal mosaicism and its relationship to aging and cancer

    Get PDF
    In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases

    Randomized trial of r-metHu granulocyte colony-stimulating factor in an intensive treatment for T-cell leukemia and advanced-stage lymphoblastic lymphoma of childhood: a Pediatric Oncology Group pilot study

    No full text
    PURPOSE: Contemporary chemotherapy has significantly improved the event-free survival (EFS) among patients with T-cell disease. However, myelosuppression has been a significant adverse effect of this approach. In this study, we assessed the impact of r-metHu granulocyte colony-stimulating factor (G-CSF) on the period of neutropenia, number of days of hospitalization, and delays in subsequent administration of chemotherapy in a cohort of patients with T-cell leukemia (T-ALL) or advanced stage lymphoblastic lymphoma (ASLL). PATIENTS AND METHODS: This open-label, randomized trial incorporated r-metHuG-CSF into the induction and two consecutive continuation-therapy cycles of our intensive program for T-cell malignancies. In the induction phase, r-metHuG-CSF was given after two different combinations of chemotherapy, one of which included vincristine, prednisone, cyclophosphamide, and adriamycin and the other a continuous infusion of high-dose ara-C and L-asparaginase. In the two continuation-therapy cycles, r-metHuG-CSF was given following the combination of vincristine, adriamycin, prednisone, and 6-mercaptopurine (MP) and after continuous infusion of high-dose cytarabine (ara-C). RESULTS: Fifty-six patients with T-ALL and 33 with ASLL were enrolled onto study from April 1994 to December 1995. Our data show no significant difference in number of days of absolute neutrophil count (ANC) less than 500/microL, hospitalizations, or delays in therapy in the induction phase. However, in the continuation-therapy phase the number of days of ANC less than 500/microL was significantly shorter (P = .017) on the G-CSF-arm without significantly affecting the number of days of hospitalizations or delays in therapy. CONCLUSION: r-metHuG-CSF did not significantly affect the period of neutropenia, hospitalization, or delays in therapy in the induction phase, whereas in the two cycles of continuation therapy, it significantly shortened the period of neutropenia
    corecore