411 research outputs found

    Agency as the Acquisition of Capital: the role of one-on-one tutoring and mentoring in changing a refugee student's educational trajectory

    Get PDF
    Current research into the experiences of refugee students in mainstream secondary schools in Australia indicates that for these students, schools are places of social and academic isolation and failure. This article introduces one such student, Lian, who came to Australia as a refugee from Burma, and whom the author tutored and mentored intensively during his final year of schooling. The article provides an empirically derived understanding of how one-on-one tutoring and mentoring became a platform through which this student was able to succeed in a structure which systematically tried to exclude him. Here, agency is conceptualised in terms of Bourdieu's concept of capital. The analysis highlights the ways in which one-on-one tutoring and mentoring provided the necessary platform by which this refugee student was able to acquire the necessary capital that effected a positive change in his educational trajectory

    On the distribution of maximum crest and wave height at intermediate water depths

    Get PDF
    We report new descriptions for the (probability) distributions of hourly maximum crest and wave height of water surface gravity waves for intermediate water depths. Estimated distributions are based on analysis of laboratory-scale measurements at the DHI wave basin. For a given sea state, the distribution of both hourly maximum crest and hourly maximum wave height, normalised by sea state significant wave height, is found to follow a generalised extreme value (GEV) distribution. Variation of the three parameters of the GEV distribution across sea states, is expressed in terms of a response surface model as a function of non-dimensional sea state Ursell number and wave steepness, and wave directional spreading angle. For inference, conventional Monte Carlo wave basin measurements are supplemented with measurements selected by means of a novel “pre-selection” sampling scheme using numerical simulations. This scheme effectively guarantees that extreme events from tails of distributions are produced, and reduces uncertainties associated with the estimated distributions. Estimation is performed using Bayesian inference, allowing uncertainties to be quantified, and providing estimates of posterior predictive tail distributions for sea states with arbitrary characteristics within the domain of sea state characteristics covered by the model

    An algebraic/numerical formalism for one-loop multi-leg amplitudes

    Full text link
    We present a formalism for the calculation of multi-particle one-loop amplitudes, valid for an arbitrary number N of external legs, and for massive as well as massless particles. A new method for the tensor reduction is suggested which naturally isolates infrared divergences by construction. We prove that for N>4, higher dimensional integrals can be avoided. We derive many useful relations which allow for algebraic simplifications of one-loop amplitudes. We introduce a form factor representation of tensor integrals which contains no inverse Gram determinants by choosing a convenient set of basis integrals. For the evaluation of these basis integrals we propose two methods: An evaluation based on the analytical representation, which is fast and accurate away from exceptional kinematical configurations, and a robust numerical one, based on multi-dimensional contour deformation. The formalism can be implemented straightforwardly into a computer program to calculate next-to-leading order corrections to multi-particle processes in a largely automated way.Comment: 71 pages, 7 figures, formulas for rank 6 pentagons added in Appendix

    Quantum mechanics: Myths and facts

    Get PDF
    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of "myths", that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.Comment: 51 pages, pedagogic review, revised, new references, to appear in Found. Phy

    Radio Science Investigation on a Mercury Orbiter Mission

    Get PDF
    We review the results from {\it Mariner 10} regarding Mercury's gravity field and the results from radar ranging regarding topography. We discuss the implications of improving these results, including a determination of the polar component, as well as the opportunity to perform relativistic gravity tests with a future {\it Mercury Orbiter}. With a spacecraft placed in orbit with periherm at 400 km altitude, apherm at 16,800 km, period 13.45 hr and latitude of periherm at +30 deg, one can expect a significant improvement in our knowledge of Mercury's gravity field and geophysical properties. The 2000 Plus mission that evolved during the European Space Agency (ESA) {\it Mercury Orbiter} assessment study can provide a global gravity field complete through the 25th degree and order in spherical harmonics. If after completion of the main mission, the periherm could be lowered to 200 km altitude, the gravity field could be extended to 50th degree and order. We discuss the possibility that a search for a Hermean ionosphere could be performed during the mission phases featuring Earth occultations. Because of its relatively large eccentricity and close proximity to the Sun, Mercury's orbital motion provides one of the best solar-system tests of general relativity. Consequently, we emphasize the number of feasible relativistic gravity tests that can be performed within the context of the parameterized post-Newtonian formalism - a useful framework for testing modern gravitational theories. We pointed out that current results on relativistic precession of Mercury's perihelion are uncertain by 0.5 %, and we discuss the expected improvement using {\it Mercury Orbiter}. We discuss the importance of {\it Mercury Orbiter} for setting limits on a possible time variation in theComment: 23 pages, LaTeX, no figure

    Astroparticle Physics with a Customized Low-Background Broad Energy Germanium Detector

    Full text link
    The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg array of high purity germanium detectors housed in an ultra-low background shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA DEMONSTRATOR will search for neutrinoless double-beta decay of 76Ge while demonstrating the feasibility of a tonne-scale experiment. It may also carry out a dark matter search in the 1-10 GeV/c^2 mass range. We have found that customized Broad Energy Germanium (BEGe) detectors produced by Canberra have several desirable features for a neutrinoless double-beta decay experiment, including low electronic noise, excellent pulse shape analysis capabilities, and simple fabrication. We have deployed a customized BEGe, the MAJORANA Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and shield at the Kimballton Underground Research Facility in Virginia. This paper will focus on the detector characteristics and measurements that can be performed with such a radiation detector in a low-background environment.Comment: Submitted to NIMA Proceedings, SORMA XII. 9 pages, 4 figure

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Thermal Evolution and Magnetic Field Generation in Terrestrial Planets and Satellites

    Full text link
    corecore