79 research outputs found

    Ignition Method Development and First Field Demonstration of In Situ Smouldering Remediation

    Get PDF
    Self-sustaining Treatment for Active Remediation (STAR), a smouldering combustion-based technology for remediating sites contaminated by industrial liquids, has been extensively studied in the laboratory. The technology had not been demonstrated at a real site. Moreover, the ignition method (based on heat conduction) for the process used in the laboratory was not appropriate for field deployment and an alternative was required. This work first presents the development of a new ignition method for smouldering combustion. This ignition technique (based on heat convection) was proven effective via laboratory tests, and then applied and improved through two field tests. These field tests, conducted on coal tar-contaminated soils below the water table at a former industrial facility, represent the first in situ demonstrations of the STAR technology. Self-sustained smoldering was demonstrated within two soil layers at the site: a fill located 3 m below ground surface (bgs) (shallow test) and a sand located 8 m bgs (deep test). The shallow test destroyed 3,728 kg of coal tar over 10 days while the deep test destroyed 864 kg of coal tar over 10 days. Concentration reductions of 99.3% and 97.3% were achieved in soils within the treated areas of the shallow and deep tests, respectively. The performance of the technology in the field (rate the reaction travelled, peak temperatures, extent of cleanup, spread of drying zone) was found to be consistent with the previous laboratory studies. Overall, this work successfully transitions the smouldering remediation concept shown in the laboratory to a field-proven technology with a robust ignition technique that allows rapid, effective deployment at contaminated sites

    ENV-654: NUMERICAL MODELLING OF SMOULDERING COMBUSTION TO OPTIMIZE EX SITU SOIL TREATMENT SYSTEM DESIGN

    Get PDF
    There is widespread soil contamination at thousands of cites in Canada resulting from the historical improper storage and disposal of industrial liquids (Story et al., 2014). Large financial resources are allocated to remediation efforts due to the human and environmental health risks associated with exposure to such contamination, with over $582 million CAN spent on remediation in 2014-15 by the Canadian government alone (Treasury Board of Canada, 2016). Our scientific understanding of site remediation has evolved greatly over the past decades and it is now widely accepted that remediation of the contaminant source zone is necessary to achieve a high level of long-term remediation (Kueper et al., 2014). Non-aqueous phase liquids, or NAPLS, are one of the most prevalent contaminants at contaminated sites and are challenging to remediate due to their highly recalcitrant nature (Kueper et al., 2003). Although many remediation technologies have been developed over the past decades, the challenge in source zone remediation of NAPLs persists. The application of smouldering combustion to treat NAPL contaminated soils has been proven as an effective technology with both the laboratory experiments and applied in situ at a field site (Switzer et al., 2009, Pironi et al., 2011, Switzer et al, 2014, Salman et al., 2015, Scholes et al., 2015). This technology, titled “Self-sustaining treatment for active remediation”, or STAR, utilizes the high calorific value of NAPLs to ignite and sustain a smouldering oxidation reaction, effectively destroying the contaminant in the process. A phenomenological model developed by MacPhee et al. (2012) uniquely combined a multiphase flow model, perimeter expansion model, and analytical expression for the forward smouldering front velocity. This model is able to predict the propagation of the reaction front in response to the interplay between a heterogeneous distribution of permeability and the time-dependent distribution of air flux. After subsequent calibration by Hasan et al. (2014), the model was shown to correctly predict the ultimate extent and time of remediation during treatment for 2D lab scale experiments

    Data hosting infrastructure for primary biodiversity data

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Bioinformatics 12 Suppl. 15 (2011): S5, doi:10.1186/1471-2105-12-S15-S5.Today, an unprecedented volume of primary biodiversity data are being generated worldwide, yet significant amounts of these data have been and will continue to be lost after the conclusion of the projects tasked with collecting them. To get the most value out of these data it is imperative to seek a solution whereby these data are rescued, archived and made available to the biodiversity community. To this end, the biodiversity informatics community requires investment in processes and infrastructure to mitigate data loss and provide solutions for long-term hosting and sharing of biodiversity data. We review the current state of biodiversity data hosting and investigate the technological and sociological barriers to proper data management. We further explore the rescuing and re-hosting of legacy data, the state of existing toolsets and propose a future direction for the development of new discovery tools. We also explore the role of data standards and licensing in the context of data hosting and preservation. We provide five recommendations for the biodiversity community that will foster better data preservation and access: (1) encourage the community's use of data standards, (2) promote the public domain licensing of data, (3) establish a community of those involved in data hosting and archival, (4) establish hosting centers for biodiversity data, and (5) develop tools for data discovery. The community's adoption of standards and development of tools to enable data discovery is essential to sustainable data preservation. Furthermore, the increased adoption of open content licensing, the establishment of data hosting infrastructure and the creation of a data hosting and archiving community are all necessary steps towards the community ensuring that data archival policies become standardized

    Reliability and validity of three questionnaires measuring context-specific sedentary behaviour and associated correlates in adolescents, adults and older adults

    Get PDF
    BACKGROUND: Reliable and valid measures of total sedentary time, context-specific sedentary behaviour (SB) and its potential correlates are useful for the development of future interventions. The purpose was to examine test-retest reliability and criterion validity of three newly developed questionnaires on total sedentary time, context-specific SB and its potential correlates in adolescents, adults and older adults. METHODS: Reliability and validity was tested in six different samples of Flemish (Belgium) residents. For the reliability study, 20 adolescents, 22 adults and 20 older adults filled out the age-specific SB questionnaire twice. Test-retest reliability was analysed using Kappa coefficients, Intraclass Correlation Coefficients and/or percentage agreement, separately for the three age groups. For the validity study, data were retrieved from 62 adolescents, 33 adults and 33 older adults, with activPAL as criterion measure. Spearman correlations and Bland-Altman plots (or non-parametric approach) were used to analyse criterion validity, separately for the three age groups and for weekday, weekend day and average day. RESULTS: The test-retest reliability for self-reported total sedentary time indicated following values: ICC = 0.37-0.67 in adolescents; ICC = 0.73-0.77 in adults; ICC = 0.68-0.80 in older adults. Item-specific reliability results (e.g. context-specific SB and its potential correlates) showed good-to-excellent reliability in 67.94%, 68.90% and 66.38% of the items in adolescents, adults and older adults respectively. All items belonging to sedentary-related equipment and simultaneous SB showed good reliability. The sections of the questionnaire with lowest reliability were: context-specific SB (adolescents), potential correlates of computer use (adults) and potential correlates of motorized transport (older adults). Spearman correlations between self-reported total sedentary time and the activPAL were different for each age group: rho = 0.02-0.42 (adolescents), rho = 0.06-0.52 (adults), rho = 0.38-0.50 (older adults). Participants over-reported total sedentary time (except for weekend day in older adults) compared to the activPAL, for weekday, weekend day and average day respectively by +57.05%, +46.29%, +53.34% in adolescents; +40.40%, +19.15%, +32.89% in adults; +10.10%, -6.24%, +4.11% in older adults. CONCLUSIONS: The questionnaires showed acceptable test-retest reliability and criterion validity. However, over-reporting of total SB was noticeable in adolescents and adults. Nevertheless, these questionnaires will be useful in getting context-specific information on SB

    Impacts of savanna trees on forage quality for a large African herbivore

    Get PDF
    Recently, cover of large trees in African savannas has rapidly declined due to elephant pressure, frequent fires and charcoal production. The reduction in large trees could have consequences for large herbivores through a change in forage quality. In Tarangire National Park, in Northern Tanzania, we studied the impact of large savanna trees on forage quality for wildebeest by collecting samples of dominant grass species in open grassland and under and around large Acacia tortilis trees. Grasses growing under trees had a much higher forage quality than grasses from the open field indicated by a more favourable leaf/stem ratio and higher protein and lower fibre concentrations. Analysing the grass leaf data with a linear programming model indicated that large savanna trees could be essential for the survival of wildebeest, the dominant herbivore in Tarangire. Due to the high fibre content and low nutrient and protein concentrations of grasses from the open field, maximum fibre intake is reached before nutrient requirements are satisfied. All requirements can only be satisfied by combining forage from open grassland with either forage from under or around tree canopies. Forage quality was also higher around dead trees than in the open field. So forage quality does not reduce immediately after trees die which explains why negative effects of reduced tree numbers probably go initially unnoticed. In conclusion our results suggest that continued destruction of large trees could affect future numbers of large herbivores in African savannas and better protection of large trees is probably necessary to sustain high animal densities in these ecosystems

    Large herbivores may alter vegetation structure of semi-arid savannas through soil nutrient mediation

    Get PDF
    In savannas, the tree–grass balance is governed by water, nutrients, fire and herbivory, and their interactions. We studied the hypothesis that herbivores indirectly affect vegetation structure by changing the availability of soil nutrients, which, in turn, alters the competition between trees and grasses. Nine abandoned livestock holding-pen areas (kraals), enriched by dung and urine, were contrasted with nearby control sites in a semi-arid savanna. About 40 years after abandonment, kraal sites still showed high soil concentrations of inorganic N, extractable P, K, Ca and Mg compared to controls. Kraals also had a high plant production potential and offered high quality forage. The intense grazing and high herbivore dung and urine deposition rates in kraals fit the accelerated nutrient cycling model described for fertile systems elsewhere. Data of a concurrent experiment also showed that bush-cleared patches resulted in an increase in impala dung deposition, probably because impala preferred open sites to avoid predation. Kraal sites had very low tree densities compared to control sites, thus the high impala dung deposition rates here may be in part driven by the open structure of kraal sites, which may explain the persistence of nutrients in kraals. Experiments indicated that tree seedlings were increasingly constrained when competing with grasses under fertile conditions, which might explain the low tree recruitment observed in kraals. In conclusion, large herbivores may indirectly keep existing nutrient hotspots such as abandoned kraals structurally open by maintaining a high local soil fertility, which, in turn, constrains woody recruitment in a negative feedback loop. The maintenance of nutrient hotspots such as abandoned kraals by herbivores contributes to the structural heterogeneity of nutrient-poor savanna vegetation

    A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars

    Get PDF
    The Curiosity rover discovered fine-grained sedimentary rocks, inferred to represent an ancient lake, preserve evidence of an environment that would have been suited to support a Martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. C, H, O, S, N, and P were measured directly as key biogenic elements, and by inference N and P are assumed to have been available. The environment likely had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars

    Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale crater, Mars

    Get PDF
    H₂O, CO₂, SO₂, O₂, H₂, H₂S, HCl, chlorinated hydrocarbons, NO and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H₂O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO₂. Concurrent evolution of O₂ and chlorinated hydrocarbons suggest the presence of oxychlorine phase(s). Sulfides are likely sources for S-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic C sources may be preserved in the mudstone; however, the C source for the chlorinated hydrocarbons is not definitively of martian origin
    corecore