104 research outputs found

    The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels

    Get PDF
    Numerous creatine formulations have been developed primarily to maximize creatine absorption. Creatine ethyl ester is alleged to increase creatine bio-availability. This study examined how a seven-week supplementation regimen combined with resistance training affected body composition, muscle mass, muscle strength and power, serum and muscle creatine levels, and serum creatinine levels in 30 non-resistance-trained males. In a double-blind manner, participants were randomly assigned to a maltodextrose placebo (PLA), creatine monohydrate (CRT), or creatine ethyl ester (CEE) group. The supplements were orally ingested at a dose of 0.30 g/kg fat-free body mass (approximately 20 g/day) for five days followed by ingestion at 0.075 g/kg fat free mass (approximately 5 g/day) for 42 days. Results showed significantly higher serum creatine concentrations in PLA (p = 0.007) and CRT (p = 0.005) compared to CEE. Serum creatinine was greater in CEE compared to the PLA (p = 0.001) and CRT (p = 0.001) and increased at days 6, 27, and 48. Total muscle creatine content was significantly higher in CRT (p = 0.026) and CEE (p = 0.041) compared to PLA, with no differences between CRT and CEE. Significant changes over time were observed for body composition, body water, muscle strength and power variables, but no significant differences were observed between groups. In conclusion, when compared to creatine monohydrate, creatine ethyl ester was not as effective at increasing serum and muscle creatine levels or in improving body composition, muscle mass, strength, and power. Therefore, the improvements in these variables can most likely be attributed to the training protocol itself, rather than the supplementation regimen

    Astrocytic 4R tau expression drives astrocyte reactivity and dysfunction

    Get PDF
    The protein tau and its isoforms are associated with several neurodegenerative diseases, many of which are characterized by greater deposition of the 4-repeat (4R) tau isoform; however, the role of 4R tau in disease pathogenesis remains unclear. We created antisense oligonucleotides (ASOs) that alter the ratio of 3R to 4R tau to investigate the role of specific tau isoforms in disease. Preferential expression of 4R tau in human tau-expressing (hTau-expressing) mice was previously shown to increase seizure severity and phosphorylated tau deposition without neuronal or synaptic loss. In this study, we observed strong colocalization of 4R tau within reactive astrocytes and increased expression of pan-reactive and neurotoxic genes following 3R to 4R tau splicing ASO treatment in hTau mice. Increasing 4R tau levels in primary astrocytes provoked a similar response, including a neurotoxic genetic profile and diminished homeostatic function, which was replicated in human induced pluripotent stem cell-derived (iPSC-derived) astrocytes harboring a mutation that exhibits greater 4R tau. Healthy neurons cultured with 4R tau-expressing human iPSC-derived astrocytes exhibited a higher firing frequency and hypersynchrony, which could be prevented by lowering tau expression. These findings support a potentially novel pathway by which astrocytic 4R tau mediates reactivity and dysfunction and suggest that astrocyte-targeted therapeutics against 4R tau may mitigate neurodegenerative disease progression

    TREM2 inhibition triggers antitumor cell activity of myeloid cells in glioblastoma

    Get PDF
    Triggering receptor expressed on myeloid cells 2 (TREM2) plays important roles in brain microglial function in neurodegenerative diseases, but the role of TREM2 in the GBM TME has not been examined. Here, we found that TREM2 is highly expressed in myeloid subsets, including macrophages and microglia in human and mouse GBM tumors and that high TREM2 expression correlates with poor prognosis in patients with GBM. TREM2 loss of function in human macrophages and mouse myeloid cells increased interferon-γ-induced immunoactivation, proinflammatory polarization, and tumoricidal capacity. In orthotopic mouse GBM models, mice with chronic and acute Trem2 loss of function exhibited decreased tumor growth and increased survival. Trem2 inhibition reprogrammed myeloid phenotypes and increased programmed cell death protein 1 (PD-1

    The Regulation and Expression of the Creatine Transporter: A Brief Review of Creatine Supplementation in Humans and Animals

    Get PDF
    Creatine monohydrate has become one of the most popular ergogenic sport supplements used today. It is a nonessential dietary compound that is both endogenously synthesized and naturally ingested through diet. Creatine ingested through supplementation has been observed to be absorbed into the muscle exclusively by means of a creatine transporter, CreaT1. The major rationale of creatine supplementation is to maximize the increase within the intracellular pool of total creatine (creatine + phosphocreatine). There is much evidence indicating that creatine supplementation can improve athletic performance and cellular bioenergetics, although variability does exist. It is hypothesized that this variability is due to the process that controls both the influx and efflux of creatine across the cell membrane, and is likely due to a decrease in activity of the creatine transporter from various compounding factors. Furthermore, additional data suggests that an individual's initial biological profile may partially determine the efficacy of a creatine supplementation protocol. This brief review will examine both animal and human research in relation to the regulation and expression of the creatine transporter (CreaT). The current literature is very preliminary in regards to examining how creatine supplementation affects CreaT expression while concomitantly following a resistance training regimen. In conclusion, it is prudent that future research begin to examine CreaT expression due to creatine supplementation in humans in much the same way as in animal models

    Beyond Structural Genomics for Plant Science

    Full text link

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment

    The effects of a creatine supplement formulation containing cinnamon extract on creatine uptake, creatine transporter expression, insulin signaling, and muscle performance in males.

    No full text
    Includes bibliographical references (p. 124-128).Creatine monohydrate has become one of the most popular ingested nutritional supplements used for its potential to enhance athletic performance. Numerous creatine formulations have been developed to maximize creatine absorption, and may also provide a means to either partially bypass or up-regulate the function of creatine transporter-1 (CreaT1). Cinnamon extract (Cinnulin) has been observed to mimic the effects of insulin, thereby up-regulating glucose uptake and insulin signaling. This study examined how a seven-week supplementation regimen with creatine monohydrate combined with Cinnulin (CCI), creatine monohydrate (CR), or placebo (PLA) affected physiological and molecular adaptations in nonresistance-trained males following a prescribed resistance-training program. Results demonstrated that Cinnulin combined with creatine monohydrate elicited greater mean increases in relative 1-RM leg press, thigh lean mass, body water, and total Akt protein content when compared to creatine monohydrate alone, or placebo; however, intramuscular creatine increases between the CCI and CR groups demonstrated no significant differences.by Ryan D. Schoch.M.S.Ed
    corecore