18 research outputs found
What on Earth have we been burning? Deciphering sedimentary records of pyrogenic carbon
Humans have interacted with fire for thousands of years, yet the utilization of fossil fuels marked the beginning of a new era. Ubiquitous in the environment, pyrogenic carbon (PyC) arises from incomplete combustion of biomass and fossil fuels, forming a continuum of condensed aromatic structures. Here we develop and evaluate 14C records for two complementary PyC molecular markers, benzene-polycarboxylic-acids (BPCAs) and polycyclic-aromatic-hydrocarbons (PAHs) preserved in aquatic sediments from a sub-urban and a remote catchment in the United States (U.S.) from mid-1700s to 1998. Results show that the majority of PyC stems from local sources and is transferred to aquatic sedimentary archives on sub-decadal to millennial time scales. Whereas a small portion stems from near-contemporaneous production and sedimentation, the majority of PyC (<90%) experiences delayed transmission due to âpre-agingâ on millennial timescales in catchment soils prior to its ultimate deposition. BPCAs (soot) and PAHs (precursors of soot) trace fossil fuel-derived PyC. Both markers parallel historical records of the consumption of fossil fuels in U.S., yet never account for more than 19% total PyC. This study demonstrates that isotopic characterization of multiple tracers is necessary to constrain histories and inventories of PyC, and that sequestration of PyC can markedly lag its production
Forest-derived lignin biomarkers in an Australian oxisol decrease substantially after 90 years of pasture
The dynamics of soil organic matter are a key factor in controlling the terrestrial carbon cycle. Compound specific stable carbon isotope analysis has given new insight in to the stability of individual organic molecules in soil. For lignin, one of the major plant compounds, available data suggest the existence of both a labile (turnover time <1Â year) and a relatively stable (turnover time in the range of decades) pool. However, these data derive almost exclusively from agricultural soils in temperate climates. In order to extend the range both in ecosystem type and observed time span, we analysed a pasture soil in subtropical Australia that had experienced a land use change from rainforest 90 years earlier. We determined the concentration and isotopic signature of lignin biomarkers and compared them to those in an existing rainforest soil nearby and to samples of the respective vegetation. The land use change shifted both the relative abundance of lignin biomarkers and their isotopic signatures. In particular, the isotope data indicate that the pasture soil contains only small proportions of inherited rainforest-derived lignin biomarkers, which are mostly close to or below detection limit. These drastic changes in biomarker composition indicate that the original lignin structure had little chance to persist in this soil over a century. Thus, the stable soil organic carbon identified an earlier study of this soil is probably highly altered material and lignin biomarkers are not a suitable proxy of this stable carbon
The benzene polycarboxylic acid (BPCA) pattern of wood pyrolyzed between 200°C and 1000°C
Environmental charcoals represent a poorly defined part of the black carbon (BC) combustion continuum and may differ widely in their chemical and physical properties, depending on combustion conditions and source material. The benzene polycarboxylic acid (BPCA) molecular marker method is well established to quantify the BC component in charcoal, soil and sediment, although observed variations between labs could stem from subtle differences in methods. The objectives of this study were to identify and improve potential sources of analytical uncertainty. The improved method was then used to qualitatively characterize wood charred at 200â1000 °C. One significant improvement of the BPCA method was to replace citric acid with phthalic acid as an internal standard, which is more stable in acidic solution and more similar to the target compounds. Also, including a soil reference material as a quality control in each analysis proved to be a robust tool to detect for variations in reproducibility. For the thermosequence, elemental O/C and H/C ratios typically decreased with temperature to 60.03 at 1000 °C, whereas BPCA concentrations peaked at 700 °C. With temperature B6CA proportions increased consistently (6â98%), except for a plateau at 250â500 °C. Thus, relative contributions of B6CA reflected the pyrolysis temperature and probably also the degree of condensation of the charcoals we investigated. Future work will show if our results can be directly related to charcoal produced under oxygen limited conditions, including charcoal formed at wildfires or so called biochar for agricultural use
Microbial carbon use efficiency promotes global soil carbon storage
Funding Information: We thank H. Yang, M. Schrumpf, T. Wutzler, R. Zheng and H. Ma for their comments and suggestions on this study. This work was supported by the National Natural Science Foundation of China (42125503) and the National Key Research and Development Program of China (2020YFA0608000, 2020YFA0607900 and 2021YFC3101600). F.T. was financially supported by China Scholarship Council during his visit at Food and Agricultural Organization of the United Nations (201906210489) and the Max-Planck Institute for Biogeochemistry (202006210289). The contributions of Y.L. were supported through US National Science Foundation DEB 1655499 and 2242034, subcontract CW39470 from Oak Ridge National Laboratory (ORNL) to Cornell University, DOE De-SC0023514, and the USDA National Institute of Food and Agriculture. S.M. has received funding from the ERC under the European Unionâs H2020 Research and Innovation Programme (101001608). The contributions of U.M. were supported through a US Department of Energy grant to the Sandia National Laboratories, which is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energyâs National Nuclear Security Administration under contract DE-NA-0003525. We thank the WoSIS database ( https://www.isric.org/explore/wosis ) for providing the publicly available global-scale SOC database used in this study. Publisher Copyright: © 2023, The Author(s).Peer reviewedPublisher PD
Warming and elevated CO2 promote rapid incorporation and degradation of plant-derived organic matter in an ombrotrophic peatland
Rising temperatures have the potential to directly affect carbon cycling in peatlands by enhancing organic matter (OM) decomposition, contributing to the release of CO2 and CH4 to the atmosphere. In turn, increasing atmospheric CO2 concentration may stimulate photosynthesis, potentially increasing plant litter inputs belowground and transferring carbon from the atmosphere into terrestrial ecosystems. Key questions remain about the magnitude and rate of these interacting and opposing environmental change drivers. Here, we assess the incorporation and degradation of plant- and microbe-derived OM in an ombrotrophic peatland after 4 years of whole-ecosystem warming (+0, +2.25, +4.5, +6.75 and +9 degrees C) and two years of elevated CO2 manipulation (500 ppm above ambient). We show that OM molecular composition was substantially altered in the aerobic acrotelm, highlighting the sensitivity of acrotelm carbon to rising temperatures and atmospheric CO2 concentration. While warming accelerated OM decomposition under ambient CO2, new carbon incorporation into peat increased in warming x elevated CO2 treatments for both plant- and microbe-derived OM. Using the isotopic signature of the applied CO2 enrichment as a label for recently photosynthesized OM, our data demonstrate that new plant inputs have been rapidly incorporated into peat carbon. Our results suggest that under current hydrological conditions, rising temperatures and atmospheric CO2 levels will likely offset each other in boreal peatlands.ISSN:1354-1013ISSN:1365-248
Warming and elevated CO2 promote incorporation of plant-derived lipids into soil organic matter in a spruce-dominated ombrotrophic bog
More than one third of global soil organic matter (SOM) is stored in peatlands, despite them occupying less than 3% of the land surface. Increasing global temperatures have the potential to stimulate the decomposition of carbon stored in peatlands, contributing to the release of disproportionate amounts of greenhouse gases to the atmosphere but increasing atmospheric CO2 concentrations may stimulate photosynthesis and return C into ecosystems. Key questions remain about the magnitude and rate of these interacting and opposite processes to environmental change drivers.
We assessed the impact of a 0â9°C temperature gradient of deep peat warming (4 years of warming; 0-200 cm depth) in ambient or elevated CO2 (2 years of +500 ppm CO2 addition) on the quantity and quality of SOM at the climate change manipulation experiment SPRUCE (Spruce and Peatland Responses Under Changing Environments) in Minnesota USA. We assessed how warming and elevated CO2 affect the degradation of plant and microbial residues as well as the incorporation of these compounds into SOM. Specifically, we combined the analyses of free extractable n-alkanes and fatty acids together with measurements of compound-specific stable carbon isotopes (ÎŽ13C).
We observed a 6â° offset in ÎŽ13C between bulk SOM and n-alkanes, which were uniformly depleted in ÎŽ13C when compared to bulk organic matter. Such an offset between SOM and n-alkanes is common due to biosynthetic isotope fractionation processes and confirms previous findings. After 4 years of deep peat warming, and 2 years of elevated CO2 addition a strong depth-specific response became visible with changes in SOM quantity and quality. In the upper 0-30 cm depth, individual n-alkanes and fatty acid concentrations declined with increasing temperatures with warming treatments, but not below 50 cm depth. In turn, the ÎŽ13C values of bulk organic matter and of individual n-alkanes and fatty acids increased in the upper 0-30 cm with increasing temperatures, but not below 50 cm depth. Thus n-alkanes, which typically turnover slower than bulk SOM, underwent a rapid transformation after a relatively short period of simulated warming in the acrotelm. Our results suggest that warming accelerated microbial decomposition of plant-derived lipids, leaving behind more degraded organic matter. The non-uniform, and depth dependent warming response implies that warming will have cascading effects on SOM decomposition in the acrotelm in peatlands. It remains to be seen how fast the catotelm will respond to rising temperatures and atmospheric CO2 concentrations
Warming promotes loss of subsoil carbon through accelerated degradation of plant-derived organic matter
Increasing global temperatures have the potential to stimulate decomposition and alter the composition of soil organic matter (SOM). However, questions remain about the extent to which SOM quality and quantity along the soil profile may change under future warming. In this study we assessed how +4 °C whole-soil warming affected the quantity and quality of SOM down to 90 cm depth in a mixed-coniferous temperate forest using biomarker analyses. Our findings indicate that 4.5 years of soil warming led to divergent responses in subsoils (>20 cm) as compared to surface soils. Warming enhanced the accumulation of plant-derived n-alkanes over the whole soil profile. In the subsoil, this was at the expense of plant- and microorganism-derived fatty acids, and the relative abundance of SOM molecular components shifted from less microbially transformed to more transformed organic matter. Fine root mass declined by 24.0 ± 7.5% with warming over the whole soil profile, accompanied by reduced plant-derived inputs and accelerated decomposition of aromatic compounds and plant-derived fatty acids in the subsoils. Our study suggests that warming accelerated microbial decomposition of plant-derived inputs, leaving behind more degraded organic matter. The non-uniform, and depth dependent SOM composition and warming response implies that subsoil carbon cycling is as sensitive and complex as in surface soils.ISSN:0038-0717ISSN:1879-342
Whole-soil warming alters microbial community, but not concentrations of plant-derived soil organic carbon in subsoil
Soils will warm in near synchrony with the air over the whole profiles following global climate change. It is largely unknown how subsoil (below 30 cm) microbial communities will respond to this warming and how plant-derived soil organic carbon (SOC) will be affected. Predictions how climate change will affect the large subsoil carbon pool (>50 % of SOC is below 30 cm soil depth) remain uncertain.
At Blodgett forest (California, USA) a field warming experiment was set up in 2013 warming whole soil profiles to 100 cm soil depth by +4°C compared to control plots. We took samples in 2018, after 4.5 years of continuous warming and investigated how warming has affected the abundance and community structure of microoganisms (using phospholipid fatty acids, PLFAs), and plant litter (using cutin and suberin).
The warmed subsoil (below 30 cm) contained significantly less microbial biomass (28%) compared to control plots, whereas the topsoil remained unchanged. Additionally below 50 cm, the microbial community was different in warmed as compared to control plots. Actinobacteria were relatively more abundant and Gram+ bacteria adapted their cell-membrane structure to warming. The decrease in microbial abundance might be related to lower SOC concentrations in warmed compared to control subsoils. In contrast to smaller SOC concentrations and less fine root mass in the warmed plots, the concentrations of the plant polymers suberin and cutin did not change. Overall our results demonstrate that already four seasons of simulated whole-soil warming caused distinct depth-specific responses of soil biogeochemistry: warming altered the subsoil microbial community, but not concentrations of plant-derived soil organic carbon
Prehistoric alteration of soil in the Lower Rhine Basin, Northwest Germanyâarchaeological, 14C and geochemical evidence
In Early Holocene, Chernozems were assumed to have covered the entire loess landscape of the Lower Rhine basinâtoday
mirrored by the distribution of Luvic Phaeozems. These Luvic Phaeozems have characteristic dark brown (Bht) horizons accumulating clay and humus, inherited and translocated from their precursors Chernozem black humic A horizons. We examined Luvic Phaeozems along a 33-km-long and 2.0â2.5-m-deep gas pipeline trench in the Lower Rhine Basin, west of Cologne. Along this transect we discovered clusters of hundreds of regularly shaped pits. These pits were always connected to the Bht horizons of adjacent Luvic Phaeozems. The Luvic Phaeozem horizons and the pits were investigated by combining methods from (geo-) archaeology (geographical distribution within the landscape, shape of the pits, soil texture), geochemistry (content of carbon,
nitrogen and black carbon), palaeobotany (species determination of charcoals) and AMS 14C measurements.
We found that the Luvic Phaeozems occurred not only in the loess-covered landscape but also in the sandy Holocene floodplain, and their distribution could not be limited to certain slope positions or parent material. Carbon and nitrogen concentrations in the Luvic Phaeozem horizons and pits were larger than in the surrounding Luvisols, whereas the C/N ratios were small (<10). Material found in the Luvic Phaeozem pits was clearly different from material found in prehistoric settlements. The pits investigated here
never contained artifacts, and carbon and nitrogen concentrations and C/N ratios were smaller. We found charcoal particles, and black carbon contributed up to 46% of the total organic carbon. The AMS 14C ages of charcoals and black carbon indicated that fire occurred from Mesolithic (9500â5500 BC) to the Medieval Ages (500â1500 AD), and mainly in the Late-/End Neolithic period
(4400â2200 BC). We conclude that (i) the Luvic Phaeozem pits and horizons are man-made, formed during several archaeological epochs between Mesolithic and Middle Ages, (ii) these pits must have been formed outside the actual prehistoric settlements (offsite) and may serve as a novel archaeological feature, (iii) the purpose of these pits at present is not clear and (iv) human activity has altered and ultimately formed the investigated soils of the Lower Rhine basin in prehistoric time