65 research outputs found

    Universal properties for linelike melting of the vortex lattice

    Full text link
    Using numerical results obtained within two models describing vortex matter (interacting elastic lines (Bose model) and uniformly frustrated XY-model) we establish universal properties of the melting transition within the linelike regime. These properties, which are captured correctly by both models, include the scaling of the melting temperature with anisotropy and magnetic field, the effective line tension of vortices in the liquid regime, the latent heat, the entropy jump per entanglement length, and relative jump of Josephson energy at the transition as compared to the latent heat. The universal properties can serve as experimental fingerprints of the linelike regime of melting. Comparison of the models allows us to establish boundaries of the linelike regime in temperature and magnetic field.Comment: Revtex, 12 pages, 2 EPS figure

    Effects of columnar disorder on flux-lattice melting in high-temperature superconductors

    Full text link
    The effect of columnar pins on the flux-lines melting transition in high-temperature superconductors is studied using Path Integral Monte Carlo simulations. We highlight the similarities and differences in the effects of columnar disorder on the melting transition in YBa2_2Cu3_3O7δ_{7-\delta} (YBCO) and the highly anisotropic Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (BSCCO) at magnetic fields such that the mean separation between flux-lines is smaller than the penetration length. For pure systems, a first order transition from a flux-line solid to a liquid phase is seen as the temperature is increased. When adding columnar defects to the system, the transition temperature is not affected in both materials as long as the strength of an individual columnar defect (expressed as a flux-line defect interaction) is less than a certain threshold for a given density of randomly distributed columnar pins. This threshold strength is lower for YBCO than for BSCCO. For higher strengths the transition line is shifted for both materials towards higher temperatures, and the sharp jump in energy, characteristic of a first order transition, gives way to a smoother and gradual rise of the energy, characteristic of a second order transition. Also, when columnar defects are present, the vortex solid phase is replaced by a pinned Bose glass phase and this is manifested by a marked decrease in translational order and orientational order as measured by the appropriate structure factors. For BSCCO, we report an unusual rise of the translational order and the hexatic order just before the melting transition. No such rise is observed in YBCO.Comment: 32 pages, 13 figures, revte

    Vortex dynamics and states of artificially layered superconducting films with correlated defects

    Full text link
    Linear resistances and IVIV-characteristics have been measured over a wide range in the parameter space of the mixed phase of multilayered a-TaGe/Ge films. Three films with varying interlayer coupling and correlated defects oriented at an angle 25\approx 25 from the film normal were investigated. Experimental data were analyzed within vortex glass models and a second order phase transition from a resistive vortex liquid to a pinned glass phase. Various vortex phases including changes from three to two dimensional behavior depending on anisotropy have been identified. Careful analysis of IVIV-characteristics in the glass phases revealed a distinctive TT and HH-dependence of the glass exponent μ\mu. The vortex dynamics in the Bose-glass phase does not follow the predicted behavior for excitations of vortex kinks or loops.Comment: 16 pages, 10 figures, 3 table

    Responsive in-season nitrogen management for cereals

    Get PDF
    Current nitrogen (N) management strategies for worldwide cereal production systems are characterized by low N use efficiency (NUE), environmental contamination, and considerable ongoing debate regarding what can be done to improve N fertilizer management. Development of innovative strategies that improve NUE and minimize off-field losses is crucial to sustaining cereal-based farming. In this paper, we review the major managerial causes for low NUE, including (1) poor synchrony between fertilizer N and crop demand, (2) uniform field applications to spatially variable landscapes that commonly vary in crop N need, and (3) failure to account for temporally variable influences on crop N needs. Poor synchronization is mainly due to large pre-plant applications of fertilizer N, resulting in high levels of inorganic soil N long before rapid crop uptake occurs. Uniform applications within fields discount the fact that N supplies from the soil, crop N uptake, and crop response are spatially variable. Current N management decisions also overlook year-to-year weather variations and sometimes fail to account for soil N mineralized in warm, wet years, ignoring indigenous N supply. The key to optimizing tradeoffs amongst yield, profit, and environmental protection is to achieve synchrony between N supply and crop demand, while accounting for spatial and temporal variability in soil N. While some have advocated a soil-based management zones (MZ) approach as a means to direct variable N applications and improve NUE, this method disregards yearly variation in weather. Thus, it seems unlikely that the soil-based MZ concept alone will be adequate for variable application of crop N inputs. Alternatively, we propose utilizing emerging computer and electronic technologies that focus on the plant to assess N status and direct in-season spatially variable N applications. Several of these technologies are reviewed and discussed. One technology showing promise is ground-based active-light reflectance measurements converted to NDVI or other similar indices. Preliminary research shows this approach addresses the issue of spatial variability and is accomplished at a time within the growing season so that N inputs are synchronized to match crop N uptake. We suggest this approach may be improved by first delineating a field into MZ using soil or other field properties to modify the decision associated with ground-based reflectance sensing. While additional adaptive research is needed to refine these newer technologies and subsequent N management decisions, preliminary results are encouraging.We expect N use efficiency can be greatly enhanced using this plant-based responsive strategy for N management in cereals

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914

    Get PDF
    A transient gravitational-wave signal, GW150914, was identi fi ed in the twin Advanced LIGO detectors on 2015 September 2015 at 09:50:45 UTC. To asse ss the implications of this discovery, the detectors remained in operation with unchanged con fi gurations over a period of 39 days around the time of t he signal. At the detection statistic threshold corresponding to that observed for GW150914, our search of the 16 days of simultaneous two-detector observational data is estimated to have a false-alarm rate ( FAR ) of < ́ -- 4.9 10 yr 61 , yielding a p -value for GW150914 of < ́ - 210 7 . Parameter estimation follo w-up on this trigger identi fi es its source as a binary black hole ( BBH ) merger with component masses ( )( ) = - + - + mm M ,36,29 12 4 5 4 4 at redshift = - + z 0.09 0.04 0.03 ( median and 90% credible range ) . Here, we report on the constraints these observations place on the rate of BBH coalescences. Considering only GW150914, assuming that all BBHs in the universe have the same masses and spins as this event, imposing a search FAR threshold of 1 per 100 years, and assuming that the BBH merger rate is constant in the comoving frame, we infer a 90% credible range of merger rates between – -- 2 53 Gpc yr 31 ( comoving frame ) . Incorporating all search triggers that pass a much lower threshold while accounting for the uncerta inty in the astrophysical origin of each trigger, we estimate a higher rate, ranging from – -- 13 600 Gpc yr 31 depending on assumptions about the BBH mass distribution. All together, our various rate estimat es fall in the conservative range – -- 2 600 Gpc yr 31

    The Physics of the B Factories

    Get PDF
    corecore