55 research outputs found

    Tumour cells down-regulate CCN2 gene expression in co-cultured fibroblasts in a Smad7- and ERK-dependent manner

    Get PDF
    BACKGROUND: Recent studies have revealed that interactions between tumour cells and the surrounding stroma play an important role in facilitating tumour growth and invasion. Stromal fibroblasts produce most of the extracellular matrix components found in the stroma. The aim of this study was to investigate mechanisms involved in tumour cell-mediated regulation of extracellular matrix and adhesion molecules in co-cultured fibroblasts. To this end, microarray analysis was performed on CCD-1068SK human fibroblast cells after direct co-culture with MDA-MB-231 human breast tumour cells. RESULTS: We found that the expression of both connective tissue growth factor (CTGF/CCN2) and type I collagen was negatively regulated in CCD-1068SK fibroblast cells under direct co-culture conditions. Further analysis revealed that Smad7, a known negative regulator of the Smad signalling pathway involved in CCN2 promoter regulation, was increased in directly co-cultured fibroblasts. Inhibition of Smad7 expression in CCD-1068SK fibroblasts resulted in increased CCN2 expression, while Smad7 overexpression had the opposite effect. Silencing CCN2 gene expression in fibroblasts led, in turn, to a decrease in type I collagen mRNA and protein levels. ERK signalling was also shown to be impaired in CCD-1068SK fibroblasts after direct co-culture with MDA-MB-231 tumour cells, with Smad7 overexpression in fibroblasts leading to a similar decrease in ERK activity. These effects were not, however, seen in fibroblasts that were indirectly co-cultured with tumour cells. CONCLUSION: We therefore conclude that breast cancer cells require close contact with fibroblasts in order to upregulate Smad7 which, in turn, leads to decreased ERK signalling resulting in diminished expression of the stromal proteins CCN2 and type I collagen

    The C-type lectin receptor CLECSF8 (CLEC4D) is expressed by myeloid cells and triggers cellular activation through syk kinase

    Get PDF
    11 pags, 7 figsCLECSF8 is a poorly characterized member of the "Dectin-2 cluster" of C-type lectin receptors and was originally thought to be expressed exclusively by macrophages. We show here that CLECSF8 is primarily expressed by peripheral blood neutrophils and monocytes and weakly by several subsets of peripheral blood dendritic cells. However, expression of this receptor is lost upon in vitro differentiation of monocytes into dendritic cells or macrophages. Like the other members of the Dectin-2 family, which require association of their transmembrane domains with signaling adaptors for surface expression, CLECSF8 is retained intracellularly when expressed in non-myeloid cells. However, we demonstrate that CLECSF8 does not associate with any known signaling adaptor molecule, including DAP10, DAP12, or the FcRÎł chain, and we found that the C-type lectin domain of CLECSF8 was responsible for its intracellular retention. Although CLECSF8 does not contain a signaling motif in its cytoplasmic domain, we show that this receptor is capable of inducing signaling via Syk kinase in myeloid cells and that it can induce phagocytosis, proinflammatory cytokine production, and the respiratory burst. These data therefore indicate that CLECSF8 functions as an activation receptor on myeloid cells and associates with a novel adaptor molecule. Characterization of the CLECSF8-deficient mice and screening for ligands using oligosaccharide microarrays did not provide further insights into the physiological function of this receptor. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.This work was funded by the Wellcome Trust, the National Research Foundation, the Deutscher Akademischer Austauschdienst, the University of Cape Town, the UK Research Council Basic Technology Initiative “Glycoar-rays” (GRS/79268), and the UK Medical Research Council. A. S. P is a fellowof the Fundação para a CiĂȘncia e Tecnologia (SFRH/BPD/26515/2006, Portugal) and M. A. C. of the Consejo Superior de Investigaciones Cientificas, Programe “Junta para la AmpliaciĂłn de Estudios” (JaeDoc/098/2011) cofinanced by the Fondo Social Europeo

    Update on current views and advances on RSV infection (Review).

    Get PDF
    Respiratory syncytial virus (RSV) infection represents an excellent paradigm of precision medicine in modern paediatrics and several clinical trials are currently performed in the prevention and management of RSV infection. A new taxonomic terminology for RSV was recently adopted, while the diagnostic and omics techniques have revealed new modalities in the early identification of RSV infections and for better understanding of the disease pathogenesis. Coordinated clinical and research efforts constitute an important step in limiting RSV global predominance, improving epidemiological surveillance, and advancing neonatal and paediatric care. This review article presents the key messages of the plenary lectures, oral presentations and posters of the '5th workshop on paediatric virology' (Sparta, Greece, 12th October 2019) organized by the Paediatric Virology Study Group, focusing on recent advances in the epidemiology, pathogenesis, diagnosis, prognosis, clinical management and prevention of RSV infection in childhood

    Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers

    Get PDF
    Abstract Introduction Several common alleles have been shown to be associated with breast and/or ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Recent genome-wide association studies of breast cancer have identified eight additional breast cancer susceptibility loci: rs1011970 (9p21, CDKN2A/B), rs10995190 (ZNF365), rs704010 (ZMIZ1), rs2380205 (10p15), rs614367 (11q13), rs1292011 (12q24), rs10771399 (12p11 near PTHLH) and rs865686 (9q31.2). Methods To evaluate whether these single nucleotide polymorphisms (SNPs) are associated with breast cancer risk for BRCA1 and BRCA2 carriers, we genotyped these SNPs in 12,599 BRCA1 and 7,132 BRCA2 mutation carriers and analysed the associations with breast cancer risk within a retrospective likelihood framework. Results Only SNP rs10771399 near PTHLH was associated with breast cancer risk for BRCA1 mutation carriers (per-allele hazard ratio (HR) = 0.87, 95% CI: 0.81 to 0.94, P-trend = 3 × 10-4). The association was restricted to mutations proven or predicted to lead to absence of protein expression (HR = 0.82, 95% CI: 0.74 to 0.90, P-trend = 3.1 × 10-5, P-difference = 0.03). Four SNPs were associated with the risk of breast cancer for BRCA2 mutation carriers: rs10995190, P-trend = 0.015; rs1011970, P-trend = 0.048; rs865686, 2df-P = 0.007; rs1292011 2df-P = 0.03. rs10771399 (PTHLH) was predominantly associated with estrogen receptor (ER)-negative breast cancer for BRCA1 mutation carriers (HR = 0.81, 95% CI: 0.74 to 0.90, P-trend = 4 × 10-5) and there was marginal evidence of association with ER-negative breast cancer for BRCA2 mutation carriers (HR = 0.78, 95% CI: 0.62 to 1.00, P-trend = 0.049). Conclusions The present findings, in combination with previously identified modifiers of risk, will ultimately lead to more accurate risk prediction and an improved understanding of the disease etiology in BRCA1 and BRCA2 mutation carriers

    Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS

    No full text
    Almost 60 years have passed since the initial discovery by Hubel and Wiesel that changes in neuronal activity can elicit developmental rewiring of the central nervous system (CNS). Over this period, we have gained a more comprehensive picture of how both spontaneous neural activity and sensory experience-induced changes in neuronal activity guide CNS circuit development. Here we review activity-dependent synaptic pruning in the mammalian CNS, which we define as the removal of a subset of synapses, while others are maintained, in response to changes in neural activity in the developing nervous system. We discuss the mounting evidence that immune and cell-death molecules are important mechanistic links by which changes in neural activity guide the pruning of specific synapses, emphasizing the role of glial cells in this process. Finally, we discuss how these developmental pruning programmes may go awry in neurodevelopmental disorders of the human CNS, focusing on autism spectrum disorder and schizophrenia. Together, our aim is to give an overview of how the field of activity-dependent pruning research has evolved, led to exciting new questions and guided the identification of new, therapeutically relevant mechanisms that result in aberrant circuit development in neurodevelopmental disorders

    Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling

    No full text
    Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1(-/-) and Cx3cl1(-/-) synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain
    • 

    corecore