19 research outputs found

    Surface Plasmon Resonance Sensing Detection of Mercury and Lead Ions Based on Conducting Polymer Composite

    Get PDF
    A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb2+ and Hg2+ ions. The Pb2+ ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb2+ compared to Hg2+. The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system

    Toxicological Assessment of Toxic Element Residues in Swine Kidney and Its Role in Public Health Risk Assessment

    Get PDF
    In order to ensure the safety of consumers in Serbia the prevalence of toxic elements (As, Cd, Hg, Pb) in swine kidney collected from three different areas in Serbia (n = 90) was determined by atomic absorption spectrometry. Also, in order to find information on the effects of accumulation of toxic elements on swine kidney, pathohistological examination of the kidneys was performed. The presence of mercury was found in 33.3% of kidney samples in the range of 0.005–0.055 mg/kg, while the presence of cadmium was detected less often (27.7%) but in larger amounts (0.05–1.23 mg/kg). The presence of arsenic was found only in one sample, while no lead was found. The results of the metal-to-metal correlation analysis supported there were the result of different sources of contamination. Pathohistological examination of kidneys confirms tubulopathies with oedema and cell vacuolization. In addition, haemorrhages and necrosis of proximal kidney tubule cells were found. This study demonstrates that toxic elements in Serbian slaughtered pigs are found at levels comparable to those reported in other countries, and consequently the levels reported in this study do not represent a concern from a consumer safety point of view. The lack of a strong correlation between histopathological changes and the incidence of toxic elements found in this study might be explained as the result of synergism among toxic elements and other nephrotoxic compounds which enhance the toxicity of the individual toxins even at the relatively low mean concentrations observed in this study

    Urinary metals and metal mixtures and oxidative stress biomarkers in an adult population from Spain: The Hortega Study

    Get PDF
    INTRODUCTION: Few studies have investigated the role of exposure to metals and metal mixtures on oxidative stress in the general population. OBJECTIVES: We evaluated the cross-sectional association of urinary metal and metal mixtures with urinary oxidative stress biomarkers, including oxidized to reduced glutathione ratio (GSSG/GSH), malondialdehyde (MDA), and 8‑oxo‑7,8‑dihydroguanine (8-oxo-dG), in a representative sample of a general population from Spain (Hortega Study). METHODS: Urine antimony (Sb), barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), molybdenum (Mo), vanadium (V) and zinc (Zn) were measured by ICPMS in 1440 Hortega Study participants. RESULTS: The geometric mean ratios (GMRs) of GSSG/GSH comparing the 80th to the 20th percentiles of metal distributions were 1.15 (95% confidence intervals [95% CI]: 1.03-1.27) for Mo, 1.17 (1.05-1.31) for Ba, 1.23 (1.04-1.46) for Cr and 1.18 (1.00-1.40) for V. For MDA, the corresponding GMRs (95% CI) were 1.13 (1.03-1.24) for Zn and 1.12 (1.02-1.23) for Cd. In 8-oxo-dG models, the corresponding GMR (95% CI) were 1.12 (1.01-1.23) for Zn and 1.09 (0.99-1.20) for Cd. Cr for GSSG/GSH and Zn for MDA and 8-oxo-dG drove most of the observed associations. Principal component (PC) 1 (largely reflecting non-essential metals) was positively associated with GSSG/GSH. The association of PC2 (largely reflecting essential metals) was positive for GSSG/GSH but inverse for MDA. CONCLUSIONS: Urine Ba, Cd, Cr, Mo, V and Zn were positively associated with oxidative stress measures at metal exposure levels relevant for the general population. The potential health consequences of environmental, including nutritional, exposure to these metals warrants further investigation

    Assessment of toxic and essential heavy metals in imported dried fruits sold in the local markets of Jordan

    No full text
    In the present study, the concentrations of nine heavy metals (Fe, Zn, Mn, Cu, Mg, Cr, Ni, Cd, and Pb) in six different imported dried fruit samples of different brands (Mangoes, black raisins, figs, apricots, plums, and cranberries) were determined by Flame Atomic Absorption Spectroscopy (FAAS) after wet digestion. Samples were collected from different stores in Amman, Jordan. The average concentration of the selected metals in the analyzed samples were found to be in the range of 1.70-8.70 (Fe), 0.15-0.72 (Zn), 0.09-0.59 (Mn), 0.07-0.46 (Cu), 2.5-53.4 (Mg), 0.06-0.15 (Cr), 0.17-0.29 (Ni), 0.01-0.05 (Cd), and 0.11-0.57 (Pb) µg/g. The highest concentrations of Fe, Zn, Mn, Mg, and Ni were found in dried figs, highest concentrations of Cr, Cd, and Pb were found in dried apricots, and highest concentrations of Cu was found in dried black raisins. The results obtained in this study showed that Mg and Fe have the highest concentrations in all analyzed samples, whereas, the lowest concentrations obtained were for Cd and Cr. The concentrations of the highly toxic metals (Pb and Cd) in the all analyzed samples were found to be below or in good agreement with the permissible limits set by different health organizations. The figures of merit obtained for the FAAS calibration curves are brilliant with good linearity (r2 > 0.99). The FAAS method was validated by determining limit of detection (LOD), limit of quantitation (LOQ), and percent recovery (%R) for all investigated metals. The results obtained in this work were compared with the literature reported values

    Poisoning of workers working in small lead-based units

    No full text
    Background: No data are available with the labor departments among the workers of small-scale lead-based units with regard to lead poisoning. One hundred and ninety-five workers were investigated for lead exposure and three were found exceeding the limit of 80 mg/dL, which required a treatment for lead poisoning. Aim: To assess the exposure and health risk in workers working in small lead-based units. Setting and Design: Random sampling is selected from the cross-sectional medical study. Methods and Materials: Medical examination cum biochemical/hematological investigations along with blood lead estimation were carried out in these workers. Statistical Analysis: Epi-Info and SPSS 16.0 were used for statistical analysis. Results and Conclusion: Workers′ blood lead levels were brought down from 114.4, 110.0 and 120.6 mg/dL with treatment of D-penicillamine to 40 mg/dL. It may be concluded that lead poisoning is a preventable public health problem that particularly affects the industrial workers in small lead-based units
    corecore