32 research outputs found

    An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes

    Full text link
    The implementation of isotopic tracers as constraints on source contributions has become increasingly relevant to understanding Earth surface processes. Interpretation of these isotopic tracers has become more accessible with the development of Bayesian Monte Carlo (BMC) mixing models, which allow uncertainty in mixing end‐members and provide methodology for systems with multicomponent mixing. This study presents an open source multiple isotope BMC mixing model that is applicable to Earth surface environments with sources exhibiting distinct end‐member isotopic signatures. Our model is first applied to new Ξ΄18O and Ξ΄D measurements from the Athabasca Glacier, which showed expected seasonal melt evolution trends and vigorously assessed the statistical relevance of the resulting fraction estimations. To highlight the broad applicability of our model to a variety of Earth surface environments and relevant isotopic systems, we expand our model to two additional case studies: deriving melt sources from Ξ΄18O, Ξ΄D, and 222Rn measurements of Greenland Ice Sheet bulk water samples and assessing nutrient sources from Ι›Nd and 87Sr/86Sr measurements of Hawaiian soil cores. The model produces results for the Greenland Ice Sheet and Hawaiian soil data sets that are consistent with the originally published fractional contribution estimates. The advantage of this method is that it quantifies the error induced by variability in the end‐member compositions, unrealized by the models previously applied to the above case studies. Results from all three case studies demonstrate the broad applicability of this statistical BMC isotopic mixing model for estimating source contribution fractions in a variety of Earth surface systems.Key Points:Open source BMC model determines source contributions in Earth surface systemsEffectively applied to stable and radiogenic isotope systems in various settingsModel able to encompass end‐member uncertainties and multiple isotopic systemsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111937/1/ggge20708.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/111937/2/ggge20708-sup-0001-2014GC005683-ts01.pd

    MMTV-Wnt1 and -Ξ”N89Ξ²-Catenin Induce Canonical Signaling in Distinct Progenitors and Differentially Activate Hedgehog Signaling within Mammary Tumors

    Get PDF
    Canonical Wnt/Ξ²-catenin signaling regulates stem/progenitor cells and, when perturbed, induces many human cancers. A significant proportion of human breast cancer is associated with loss of secreted Wnt antagonists and mice expressing MMTV-Wnt1 and MMTV-Ξ”N89Ξ²-catenin develop mammary adenocarcinomas. Many studies have assumed these mouse models of breast cancer to be equivalent. Here we show that MMTV-Wnt1 and MMTV-Ξ”N89Ξ²-catenin transgenes induce tumors with different phenotypes. Using axin2/conductin reporter genes we show that MMTV-Wnt1 and MMTV-Ξ”N89Ξ²-catenin activate canonical Wnt signaling within distinct cell-types. Ξ”N89Ξ²-catenin activated signaling within a luminal subpopulation scattered along ducts that exhibited a K18+ERβˆ’PRβˆ’CD24highCD49flow profile and progenitor properties. In contrast, MMTV-Wnt1 induced canonical signaling in K14+ basal cells with CD24/CD49f profiles characteristic of two distinct stem/progenitor cell-types. MMTV-Wnt1 produced additional profound effects on multiple cell-types that correlated with focal activation of the Hedgehog pathway. We document that large melanocytic nevi are a hitherto unreported hallmark of early hyperplastic Wnt1 glands. These nevi formed along the primary mammary ducts and were associated with Hedgehog pathway activity within a subset of melanocytes and surrounding stroma. Hh pathway activity also occurred within tumor-associated stromal and K14+/p63+ subpopulations in a manner correlated with Wnt1 tumor onset. These data show MMTV-Wnt1 and MMTV-Ξ”N89Ξ²-catenin induce canonical signaling in distinct progenitors and that Hedgehog pathway activation is linked to melanocytic nevi and mammary tumor onset arising from excess Wnt1 ligand. They further suggest that Hedgehog pathway activation maybe a critical component and useful indicator of breast tumors arising from unopposed Wnt1 ligand

    Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation

    Get PDF
    Recent studies have unequivocally identified multipotent stem/progenitor cells in mammary glands, offering a tractable model system to unravel genetic and epigenetic regulation of epithelial stem/progenitor cell development and homeostasis. In this study, we show that Pygo2, a member of an evolutionarily conserved family of plant homeo domain–containing proteins, is expressed in embryonic and postnatal mammary progenitor cells. Pygo2 deficiency, which is achieved by complete or epithelia-specific gene ablation in mice, results in defective mammary morphogenesis and regeneration accompanied by severely compromised expansive self-renewal of epithelial progenitor cells. Pygo2 converges with Wnt/Ξ²-catenin signaling on progenitor cell regulation and cell cycle gene expression, and loss of epithelial Pygo2 completely rescues Ξ²-catenin–induced mammary outgrowth. We further describe a novel molecular function of Pygo2 that is required for mammary progenitor cell expansion, which is to facilitate K4 trimethylation of histone H3, both globally and at Wnt/Ξ²-catenin target loci, via direct binding to K4-methyl histone H3 and recruiting histone H3 K4 methyltransferase complexes

    Sex and Death: The Effects of Innate Immune Factors on the Sexual Reproduction of Malaria Parasites

    Get PDF
    Malaria parasites must undergo a round of sexual reproduction in the blood meal of a mosquito vector to be transmitted between hosts. Developing a transmission-blocking intervention to prevent parasites from mating is a major goal of biomedicine, but its effectiveness could be compromised if parasites can compensate by simply adjusting their sex allocation strategies. Recently, the application of evolutionary theory for sex allocation has been supported by experiments demonstrating that malaria parasites adjust their sex ratios in response to infection genetic diversity, precisely as predicted. Theory also predicts that parasites should adjust sex allocation in response to host immunity. Whilst data are supportive, the assumptions underlying this prediction – that host immune responses have differential effects on the mating ability of males and females – have not yet been tested. Here, we combine experimental work with theoretical models in order to investigate whether the development and fertility of male and female parasites is affected by innate immune factors and develop new theory to predict how parasites' sex allocation strategies should evolve in response to the observed effects. Specifically, we demonstrate that reactive nitrogen species impair gametogenesis of males only, but reduce the fertility of both male and female gametes. In contrast, tumour necrosis factor-Ξ± does not influence gametogenesis in either sex but impairs zygote development. Therefore, our experiments demonstrate that immune factors have complex effects on each sex, ranging from reducing the ability of gametocytes to develop into gametes, to affecting the viability of offspring. We incorporate these results into theory to predict how the evolutionary trajectories of parasite sex ratio strategies are shaped by sex differences in gamete production, fertility and offspring development. We show that medical interventions targeting offspring development are more likely to be β€˜evolution-proof’ than interventions directed at killing males or females. Given the drive to develop medical interventions that interfere with parasite mating, our data and theoretical models have important implications

    Sertoli cells modulate testicular vascular network development, structure and function to influence circulating testosterone concentrations in adult male mice

    Get PDF
    The testicular vasculature forms a complex network, providing oxygenation, micronutrients, and waste clearance from the testis. The vasculature is also instrumental to testis function because it is both the route by which gonadotropins are delivered to the testis and by which T is transported away to target organs. Whether Sertoli cells play a role in regulating the testicular vasculature in postnatal life has never been unequivocally demonstrated. In this study we used models of acute Sertoli cell ablation and acute germ cell ablation to address whether Sertoli cells actively influence vascular structure and function in the adult testis. Our findings suggest that Sertoli cells play a key role in supporting the structure of the testicular vasculature. Ablating Sertoli cells (and germ cells) or germ cells alone results in a similar reduction in testis size, yet only the specific loss of Sertoli cells leads to a reduction in total intratesticular vascular volume, the number of vascular branches, and the numbers of small microvessels; loss of germ cells alone has no effect on the testicular vasculature. These perturbations to the testicular vasculature leads to a reduction in fluid exchange between the vasculature and testicular interstitium, which reduces gonadotropin-stimulated circulating T concentrations, indicative of reduced Leydig cell stimulation and/or reduced secretion of T into the vasculature. These findings describe a new paradigm by which the transport of hormones and other factors into and out of the testis may be influenced by Sertoli cells and highlights these cells as potential targets for enhancing this endocrine relationship. The testicular vasculature forms a complex capillary bed, interdigitating between the seminiferous tubules to provide oxygenation, delivery of micronutrients, and clearance of waste from the testis. Impairment of the testicular vasculature, for example, the reduction in venous drainage observed in cases of varicocele, causes intratesticular hypoxia and germ cell apoptosis (1). The vasculature is also instrumental to the endocrine function of the testis because it is the route by which pituitary gonadotropins are delivered to the testis to support T production and spermatogenesis (2). Conversely, alongside the lymphatic system, the vascular system is important for transport of T to other body systems; a reduced testis and vascular volume is associated with a reduction in circulating T concentrations (3). Our understanding of the mechanisms by which the testis controls local vascular function in adulthood is extremely limited. There is some evidence that testicular mast cells can influence vascular blood flow through release of 5-hydroxytryptamine (4), but perhaps the most well-studied factor influencing testicular vascular function is T. T is a well-established regulator of testicular vasomotion (rhythmical contraction and relaxation of blood vessels, independent of heartbeat) (5, 6) via direct T-mediated activation of the androgen receptor in smooth muscle cells of the testicular vasculature (7). Speculation that Sertoli cells may influence the testicular vasculature is supported by some indirect evidence (5) and in vitro studies (8), but confirmation of a direct role for Sertoli cells in the regulation of the testicular vasculature in vivo has never been demonstrated unequivocally. Recently we developed a unique model system that uses diphtheria toxin to specifically and acutely ablate Sertoli cells from the testis (9, 10). This model has revealed several important, yet previously unknown, roles that Sertoli cells play in neonatal and adult life (reviewed in reference 11). In this study we used models of acute Sertoli cell ablation and acute germ cell ablation, to address whether Sertoli cells actively influence vascular function in the adult testis. Our findings suggest that Sertoli cells play a key role in supporting the structure of the testicular vasculature and describe a new paradigm by which the transport of hormones and other factors into and out of the testis can be influenced by Sertoli cells and highlights these cells as potential targets for enhancing this endocrine relationship
    corecore