260 research outputs found

    Ocean color spectrum calculations

    Get PDF
    The development is considered of procedures for measuring a number of subsurface oceanographic parameters using remotely sensed ocean color data. It is proposed that the first step in this effort should be the development of adequate theoretical models relating the desired oceanographic parameters to the upwelling radiances to be observed. A portion of a contributory theoretical model is shown to be described by a modified single scattering approach based upon a simple treatment of multiple scattering. The resulting quasi-single scattering model can be used to predict the upwelling distribution of spectral radiance emerging from the sea. The shape of the radiance spectrum predicted by this model for clear ocean water shows encouraging agreement with measurments made at the edge of the Sargasso Sea off Cape Hatteras

    O-ring gasket test fixture

    Get PDF
    An apparatus is presented for testing O-ring gaskets under a variety of temperature, pressure, and dynamic loading conditions. Specifically, this apparatus has the ability to simulate a dynamic loading condition where the sealing surface in contact with the O-ring moves both away from and axially along the face of the O-ring

    Implications of animal water balance for terrestrial food webs

    Get PDF
    Recent research has documented shifts in per capita trophic interactions and food webs in response to changes in environmental moisture, from the top-down (consumers to plants), rather than solely bottom-up (plants to consumers). These responses may be predictable from effects of physiological, behavioral, and ecological traits on animal water balance, although predictions could be modified by energy or nutrient requirements, the risk of predation, population-level responses, and bottom-up effects. Relatively little work has explicitly explored food web effects of changes in animal water balance, despite the likelihood of widespread relevance, including during periodic droughts in mesic locations, where taxa may lack adaptations for water conservation. More research is needed, particularly in light of climate change and hydrological alteration

    Northern Ireland care leavers 2018/19

    Get PDF

    River drying lowers the diversity and alters the composition of an assemblage of desert riparian arthropods

    Get PDF
    Summary 1. Many studies have shown negative effects of river drying on in‐stream animals. However, the influence of river drying on riparian animals remains poorly studied. We examined ground‐dwelling riparian arthropod assemblages along a drying section of the semi‐arid San Pedro River in southeastern Arizona, U.S.A. 2. We found strong differences in assemblage composition, taxon diversity and the abundance of key taxa between dry and flowing sites, with higher diversity and abundance of most taxa at flowing sites. 3. Changes in assemblage composition, taxon diversity and abundance of representative taxa were associated with a combined measure of water availability that included distance to water and type of water. Other environmental variables showed a weaker association with changes in these arthropod assemblages. 4. Thus, we found evidence that desert riparian arthropods are sensitive to river drying and to reduction in water resources. Increases in drying along this river may reduce the diversity and the abundance of many groups of ground‐dwelling arthropods, leading to marked shifts in community composition

    Animal water balance drives top-down effects in a riparian forest-implications for terrestrial trophic cascades

    Get PDF
    Despite the clear importance of water balance to the evolution of terrestrial life, much remains unknown about the effects of animal water balance on food webs. Based on recent research suggesting animal water imbalance can increase trophic interaction strengths in cages, we hypothesized that water availability could drive top-down effects in open environments, influencing the occurrence of trophic cascades. We manipulated large spider abundance and water availability in 20 × 20 m open-air plots in a streamside forest in Arizona, USA, and measured changes in cricket and small spider abundance and leaf damage. As expected, large spiders reduced both cricket abundance and herbivory under ambient, dry conditions, but not where free water was added. When water was added (free or within moist leaves), cricket abundance was unaffected by large spiders, but spiders still altered herbivory, suggesting behavioural effects. Moreover, we found threshold-type increases in herbivory at moderately low soil moisture (between 5.5% and 7% by volume), suggesting the possibility that water balance may commonly influence top-down effects. Overall, our results point towards animal water balance as an important driver of direct and indirect species interactions and food web dynamics in terrestrial ecosystems
    corecore