524 research outputs found

    Octopus Magnificus (Cephalopoda: Octopodidae), A New Species of Large Octopod from the Southeastern Atlantic

    Get PDF
    A new species of octopod, Octopus magnificus, is described based on a total of 131 specimens from the southeastern Atlantic. The species has been collected from 26°03′S, 13°43′E to 34°29′S, 25°36′E between 2–560 m of depth, mainly on fine sandy bottom. The species is characterized by its large overall size, long ligula, the anatomy of the male reproductive tract, the shape of the funnel organ, skin loose and elongate folds present in live animals. O. magnificus is compared to three large octopuses, namely O. dofleini, O. maorum and Enteroctopus megalocyathus

    Human case of swine influenza A (H1N1), Aragon, Spain, November 2008

    Get PDF
    A human case of swine influenza A (H1N1) in a 50-year-old woman from a village near Teruel (Aragon, in the north-east of Spain), with a population of about 200 inhabitants, has been reported in November 2008.S

    Perivellosa disease massive fibrin deposition, association with Down syndrome: case report and literature review

    Get PDF
    The disease perivellosa massive fibrin deposition (MPFD), is a condition characterized by uncontrolled mainly fibrin deposition intervillous space. The incidence worldwide is 0.028% per 1000 live births, there is only one case report where this condition is associated with trisomy 21, in our country there are no reports of this disease. The MPFD has high morbidity, obstetric mortality, recurrence, as well as neurodevelopmental significance of newborns. The etiology until the moment is unknown, difficult diagnosis and management for the obstetrician. The aim is to report MPFD association with trisomy 21 (T21) and a review of the medical literature regarding this condition

    Effect of the reduced graphene oxide (rGO) compaction degree and concentration on rGO-polymer composite printability and cell interactions

    Get PDF
    Graphene derivatives combined with polymers have attracted enormous attention for bone tissue engineering applications. Among others, reduced graphene oxide (rGO) is one of the preferred graphene-based fillers for the preparation of composites via melt compounding, and their further processing into 3D scaffolds, due to its established large-scale production method, thermal stability, and electrical conductivity. In this study, rGO (low bulk density 10 g L-1) was compacted by densification using a solvent (either acetone or water) prior to melt compounding, to simplify its handling and dosing into a twin-screw extrusion system. The effects of rGO bulk density (medium and high), densification solvent, and rGO concentration (3, 10 and 15% in weight) on rGO dispersion within the composite, electrical conductivity, printability and cell-material interactions were studied. High bulk density rGO (90 g L-1) occupied a low volume fraction within polymer composites, offering poor electrical properties but a reproducible printability up to 15 wt% rGO. On the other hand, the volume fraction within the composites of medium bulk density rGO (50 g L-1) was higher for a given concentration, enhancing rGO particle interactions and leading to enhanced electrical conductivity, but compromising the printability window. For a given bulk density (50 g L-1), rGO densified in water was more compacted and offered poorer dispersability within the polymer than rGO densified in acetone, and resulted in scaffolds with poor layer bonding or even lack of printability at high rGO percentages. A balance in printability and electrical properties was obtained for composites with medium bulk density achieved with rGO densified in acetone. Here, increasing rGO concentration led to more hydrophilic composites with a noticeable increase in protein adsorption. Moreover, scaffolds prepared with such composites presented antimicrobial properties even at low rGO contents (3 wt%). In addition, the viability and proliferation of human mesenchymal stromal cells (hMSCs) were maintained on scaffolds with up to 15% rGO and with enhanced osteogenic differentiation on 3% rGO scaffolds

    Green Production of Anionic Surfactant Obtained from Pea Protein

    Get PDF
    A pea protein isolate was hydrolyzed by a double enzyme treatment method in order to obtain short peptide sequences used as raw materials to produce lipopeptides-based surfactants. Pea protein hydrolysates were prepared using the combination of Alcalase and Flavourzyme. The influence of the process variables was studied to optimize the proteolytic degradation to high degrees of hydrolysis. The average peptide chain lengths were obtained at 3–5 amino acid units after a hydrolysis of 30 min with the mixture of enzymes. Then, N-acylation in water, in presence of acid chloride (C12 and C16), carried out with a conversion rate of amine functions of 90%, allowed to obtain anionic surfactant mixtures (lipopeptides and sodium fatty acids). These two steps were performed in water, in continuous and did not generate any waste. This process was therefore in line with green chemistry principles. The surface activities (CMC, foaming and emulsifying properties) of these mixtures were also studied. These formulations obtained from natural renewable resources and the reactions done under environmental respect, could replace petrochemical based surfactants for some applications

    Role of targeted therapies in rheumatic patients on COVID-19 outcomes: Results from the COVIDSER study

    Get PDF
    Objectives To analyse the effect of targeted therapies, either biological (b) disease-modifying antirheumatic drugs (DMARDs), targeted synthetic (ts) DMARDs and other factors (demographics, comorbidities or COVID-19 symptoms) on the risk of COVID-19 related hospitalisation in patients with inflammatory rheumatic diseases. Methods The COVIDSER study is an observational cohort including 7782 patients with inflammatory rheumatic diseases. Multivariable logistic regression was used to estimate ORs and 95% CIs of hospitalisation. Antirheumatic medication taken immediately prior to infection, demographic characteristics, rheumatic disease diagnosis, comorbidities and COVID-19 symptoms were analysed. Results A total of 426 cases of symptomatic COVID-19 from 1 March 2020 to 13 April 2021 were included in the analyses: 106 (24.9%) were hospitalised and 19 (4.4%) died. In multivariate-adjusted models, bDMARDs and tsDMARDs in combination were not associated with hospitalisation compared with conventional synthetic DMARDs (OR 0.55, 95% CI 0.24 to 1.25 of b/tsDMARDs, p=0.15). Tumour necrosis factor inhibitors (TNF-i) were associated with a reduced likelihood of hospitalisation (OR 0.32, 95% CI 0.12 to 0.82, p=0.018), whereas rituximab showed a tendency to an increased risk of hospitalisation (OR 4.85, 95% CI 0.86 to 27.2). Glucocorticoid use was not associated with hospitalisation (OR 1.69, 95% CI 0.81 to 3.55). A mix of sociodemographic factors, comorbidities and COVID-19 symptoms contribute to patients'' hospitalisation. Conclusions The use of targeted therapies as a group is not associated with COVID-19 severity, except for rituximab, which shows a trend towards an increased risk of hospitalisation, while TNF-i was associated with decreased odds of hospitalisation in patients with rheumatic disease. Other factors like age, male gender, comorbidities and COVID-19 symptoms do play a role.

    Design and baseline characteristics of SALT-HF trial: hypertonic saline therapy in ambulatory heart failure

    Get PDF
    Aims: Hypertonic saline solution (HSS) plus intravenous (IV) loop diuretic appears to enhance the diuretic response in patients hospitalized for heart failure (HF). The efficacy and safety of this therapy in the ambulatory setting have not been evaluated. We aimed to describe the design and baseline characteristics of the SALT-HF trial participants. Methods and results: ‘Efficacy of Saline Hypertonic Therapy in Ambulatory Patients with HF’ (SALT-HF) trial was a multicenter, double-blinded, and randomized study involving ambulatory patients who experienced worsening heart failure (WHF) without criteria for hospitalization. Enrolled patients had to present at least two signs of volume overload, use ≥ 80 mg of oral furosemide daily, and have elevated natriuretic peptides. Patients were randomized 1:1 to treatment with a 1-h infusion of IV furosemide plus HSS (2.6–3.4% NaCl depending on plasmatic sodium levels) versus a 1-h infusion of IV furosemide at the same dose (125–250 mg, depending on basal loop diuretic dose). Clinical, laboratory, and imaging parameters were collected at baseline and after 7 days, and a telephone visit was planned after 30 days. The primary endpoint was 3-h diuresis after treatment started. Secondary endpoints included (a) 7-day changes in congestion data, (b) 7-day changes in kidney function and electrolytes, (c) 30-day clinical events (need of IV diuretic, HF hospitalization, cardiovascular mortality, all-cause mortality or HF-hospitalization). Results: A total of 167 participants [median age, 81 years; interquartile range (IQR), 73–87, 30.5% females] were randomized across 13 sites between December 2020 and March 2023. Half of the participants (n = 82) had an ejection fraction >50%. Most patients showed a high burden of comorbidities, with a median Charlson index of 3 (IQR: 2–4). Common co-morbidities included diabetes mellitus (41%, n = 69), atrial fibrillation (80%, n = 134), and chronic kidney disease (64%, n = 107). Patients exhibited a poor functional NYHA class (69% presenting NYHA III) and several signs of congestion. The mean composite congestion score was 4.3 (standard deviation: 1.7). Ninety per cent of the patients (n = 151) presented oedema and jugular engorgement, and 71% (n = 118) showed lung B lines assessed by ultrasound. Median inferior vena cava diameter was 23 mm, (IQR: 21–25), and plasmatic levels of N-terminal-pro-B-type natriuretic peptide (NTproBNP) and antigen carbohydrate 125 (CA125) were increased (median NT-proBNP 4969 pg/mL, IQR: 2508–9328; median CA125 46 U/L, IQR: 20–114). Conclusions: SALT-HF trial randomized 167 ambulatory patients with WHF and will determine whether an infusion of hypertonic saline therapy plus furosemide increases diuresis and improves decongestion compared to equivalent furosemide administration alone

    SMARCA4 deficient tumours are vulnerable to KDM6A/UTX and KDM6B/JMJD3 blockade

    Get PDF
    The authors thank Isabel Bartolessis (Cancer Genetics Group) at IJC for technical assistance. This work was supported by the Spanish Ministry of Economy and CompetitivityMINECO (grant number SAF-2017-82186R, to M.S.-C., and grant PI19/01320 to A. Villanueva) and from the Fundacion Cientifica of the Asociacion Espanola Contra el Cancer (AECC) (grant number GCB14142170MONT) to M.S.-C. A. Villanueva is also funded by the Department of Health of the Generalitat de Catalunya (2014SGR364). O.A. R. received a Juan de la Cierva postdoctoral contract (grant No. IJCI-2016-28201, until November 2019) and an AECC research contract (INVES19045ROME from December 2019). A. Vilarrubi, P.L. and A.A. are supported by pre-doctoral contracts from the Spanish MINECO (FPI-fellowship: PRE2018-084624, BES-2015-072204 and FPU17/00067). M.S. was supported by a Rio Hortega contract from the Instituto de Salud Carlos III (CM17/00180). L.F. received a European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Actions grant agreement, number 799850.Despite the genetic inactivation of SMARCA4, a core component of the SWI/SNF-complex commonly found in cancer, there are no therapies that effectively target SMARCA4-deficient tumours. Here, we show that, unlike the cells with activated MYC oncogene, cells with SMARCA4 inactivation are refractory to the histone deacetylase inhibitor, SAHA, leading to the aberrant accumulation of H3K27me3. SMARCA4-mutant cells also show an impaired transactivation and significantly reduced levels of the histone demethylases KDM6A/UTX and KDM6B/JMJD3, and a strong dependency on these histone demethylases, so that its inhibition compromises cell viability. Administering the KDM6 inhibitor GSK-J4 to mice orthotopically implanted with SMARCA4-mutant lung cancer cells or primary small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT), had strong anti-tumour effects. In this work we highlight the vulnerability of KDM6 inhibitors as a characteristic that could be exploited for treating SMARCA4-mutant cancer patients.Spanish Ministry of Economy and Competitivity-MINECO SAF-2017-82186R PI19/01320Fundacion Cientifica of the Asociacion Espanola Contra el Cancer (AECC) GCB14142170MONTDepartment of Health of the Generalitat de Catalunya 2014SGR364Juan de la Cierva postdoctoral contract IJCI-2016-28201AECC research contract INVES19045ROMESpanish MINECO PRE2018-084624 BES-2015-072204 FPU17/00067Instituto de Salud Carlos III European Commission CM17/00180European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Actions grant agreement 79985

    Particle interactions in liquid magnetic colloids by zero field cooled measurements: effects on heating efficiency

    Get PDF
    The influence of magnetic interactions in assemblies formed by either aggregated or disaggregated uniform gamma-Fe_2O_3 particles are investigated as a function of particle size, concentration, and applied field. Hyperthermia and magnetization measurements are performed in the liquid phase of colloids consisting of 8 and 13 nm uniform gamma-Fe_2O_3 particles dispersed in water and hexane. Although hexane allows the disagglomerated obtaining particle system; aggregation is observed in the case of water colloids. The zero field cooled (ZFC) curves show a discontinuity in the magnetization values associated with the melting points of water and hexane. Additionally, for 13 nm gamma-Fe_2O_3 dispersed in hexane, a second magnetization jump is observed that depends on particle concentration and shifts toward lower temperature by increasing applied field. This second jump is related to the strength of the magnetic interactions as it is only present in disagglomerated particle systems with the largest size, i.e., is not observed for 8 nm superparamagnetic particles, and surface effects can be discarded. The specific absorption rate (SAR) decreases with increasing concentration only for the hexane colloid, whereas for aqueous colloids, the SAR is almost independent of particle concentration. Our results suggest that, as a consequence of the magnetic interactions, the dipolar field acting on large particles increases with concentration, leading to a decrease of the SAR

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented
    corecore