67 research outputs found

    Function of Arabidopsis hexokinase-like1 as a negative regulator of plant growth

    Get PDF
    A recent analysis of the hexokinase (HXK) gene family from Arabidopsis revealed that three hexokinase-like (HKL) proteins lack catalytic activity, but share about 50% identity with the primary glucose (glc) sensor/transducer protein AtHXK1. Since the AtHKL1 protein is predicted to bind glc, although with a relatively decreased affinity, a reverse genetics approach was used to test whether HKL1 might have a related regulatory function in plant growth. By comparing phenotypes of an HKL1 mutant (hkl1-1), an HXK1 mutant (gin2-1), and transgenic lines that overexpress HKL1 in either wild-type or gin2-1 genetic backgrounds, it is shown that HKL1 is a negative effector of plant growth. Interestingly, phenotypes of HKL1 overexpression lines are generally very similar to those of gin2-1. These are quantified, in part, as reduced seedling sensitivity to high glc concentrations and reduced seedling sensitivity to auxin-induced lateral root formation. However, commonly recognized targets of glc signalling are not apparently altered in any of the HKL1 mutant or transgenic lines. In fact, most, but not all, of the observed phenotypes associated with HKL1 overexpression occur independently of the presence of HXK1 protein. The data indicate that HKL1 mediates cross-talk between glc and other plant hormone response pathways. It is also considered Whether a possibly decreased glc binding affinity of HKL1 could possibly be a feedback mechanism to limit plant growth in the presence of excessive carbohydrate availability is further considered

    Increased peri-ductal collagen micro-organization may contribute to raised mammographic density

    Get PDF
    BACKGROUND: High mammographic density is a therapeutically modifiable risk factor for breast cancer. Although mammographic density is correlated with the relative abundance of collagen-rich fibroglandular tissue, the causative mechanisms, associated structural remodelling and mechanical consequences remain poorly defined. In this study we have developed a new collaborative bedside-to-bench workflow to determine the relationship between mammographic density, collagen abundance and alignment, tissue stiffness and the expression of extracellular matrix organising proteins. METHODS: Mammographic density was assessed in 22 post-menopausal women (aged 54–66 y). A radiologist and a pathologist identified and excised regions of elevated non-cancerous X-ray density prior to laboratory characterization. Collagen abundance was determined by both Masson’s trichrome and Picrosirius red staining (which enhances collagen birefringence when viewed under polarised light). The structural specificity of these collagen visualisation methods was determined by comparing the relative birefringence and ultrastructure (visualised by atomic force microscopy) of unaligned collagen I fibrils in reconstituted gels with the highly aligned collagen fibrils in rat tail tendon. Localised collagen fibril organisation and stiffness was also evaluated in tissue sections by atomic force microscopy/spectroscopy and the abundance of key extracellular proteins was assessed using mass spectrometry. RESULTS: Mammographic density was positively correlated with the abundance of aligned periductal fibrils rather than with the abundance of amorphous collagen. Compared with matched tissue resected from the breasts of low mammographic density patients, the highly birefringent tissue in mammographically dense breasts was both significantly stiffer and characterised by large (>80 μm long) fibrillar collagen bundles. Subsequent proteomic analyses not only confirmed the absence of collagen fibrosis in high mammographic density tissue, but additionally identified the up-regulation of periostin and collagen XVI (regulators of collagen fibril structure and architecture) as potential mediators of localised mechanical stiffness. CONCLUSIONS: These preliminary data suggest that remodelling, and hence stiffening, of the existing stromal collagen microarchitecture promotes high mammographic density within the breast. In turn, this aberrant mechanical environment may trigger neoplasia-associated mechanotransduction pathways within the epithelial cell population. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13058-015-0664-2) contains supplementary material, which is available to authorized users

    Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance

    Get PDF
    Ambient temperatures are predicted to rise in the future owing to several reasons associated with global climate changes. These temperature increases can result in heat stress- a severe threat to crop production in most countries. Legumes are well-known for their impact on agricultural sustainability as well as their nutritional and health benefits. Heat stress imposes challenges for legume crops and has deleterious effects on the morphology, physiology, and reproductive growth of plants. High-temperature stress at the time of the reproductive stage is becoming a severe limitation for production of grain legumes as their cultivation expands to warmer environments and temperature variability increases due to climate change. The reproductive period is vital in the life cycle of all plants and is susceptible to high-temperature stress as various metabolic processes are adversely impacted during this phase, which reduces crop yield. Food legumes exposed to high-temperature stress during reproduction show flower abortion, pollen and ovule infertility, impaired fertilization, and reduced seed filling, leading to smaller seeds and poor yields. Through various breeding techniques, heat tolerance in major legumes can be enhanced to improve performance in the field. Omics approaches unravel different mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward high-temperature stress

    The Mobile Phone and a Migrant Story: Digital Representation of a Marginalized Other

    No full text
    These are the slides from my presentation at the MLA Convention 2020. Abstract: The mobile phone often plays a critical role in the migrant journey, as it does for Nour, the protagonist in Bury Me, My Love (2017). Designed as a mobile app game, Bury Me, My Love follows the journey of a Syrian migrant. The designers of this digital fiction hope players "empathize and understand what those people go through" (Kidwell 2018). This desire for players to "empathize" with "those people" presents a couple of ethical challenges. First, this work can be perceived as a tool to foster empathy, which risks promoting virtual voyeurism and conflating the experience of playing the game with knowing the Other (Dussault 2017). Secondly, Bury Me, My Love is a literary and aesthetic representation of a marginalized Other, which also poses significant ethical barriers. I argue that the digital medium of this work, the mobile phone, offers a means to address the ethical issues of representing and attempting to foster empathy for the Other. Based on the work of psychoanalyst Donald Winnicott and his concept of transitional phenomena, the mobile phone can be considered a potential transitional object (Ribak 2009; MacRury and Yates 2016). The mobile phone, as a transitional object, supports what I call a “playful space of mind” to encounter the migrant Other while the digital features of the mobile phone enable this digital fiction to disrupt fixed representation of the migrant Other and reveal a means to foster empathy
    corecore