229 research outputs found

    The Egyptian wheat cultivar Gemmeiza-12 is a source of resistance against the fungus <i>Zymoseptoria tritici</i>

    Get PDF
    Background: Wheat is one of the world’s most important cereal crops. However, the fungal pathogen Zymoseptoria tritici can cause disease epidemics, leading to reduced yields. With climate change and development of new agricultural areas with suitable environments, Z. tritici may advance into geographical areas previously unaffected by this pathogen. It is currently unknown how Egyptian wheat will perform in the face of this incoming threat. This project aimed to assess the resistance of Egyptian wheat germplasm to Z. tritici, to identify cultivars with high levels of resistance and characterise the mechanism(s) of resistance present in these cultivars. Results: Eighteen Egyptian wheat cultivars were screened against two Z. tritici model isolates and exhibited a wide spectrum of responses. This ranged from resistance to complete susceptibility to one or both isolates tested. The most highly resistant cultivars from the initial screen were then tested under two environmental conditions against modern UK field isolates. Disease levels under UK-like conditions were higher, however, symptom development on the cultivar Gemmeiza-12 was noticeably slower than on other Egyptian wheats. The robustness of the resistance shown by Gemmeiza-12 was confirmed in experiments mimicking Egyptian environmental conditions, where degree of Z. tritici infection was lower. The Kompetitive allele-specific PCR (KASP) diagnostic assay suggested the presence of an Stb6 resistant allele in several Egyptian wheats including Gemmeiza-12. Infection assays using the IPO323 WT and IPO323ΔAvrStb6 mutant confirmed the presence of Stb6 in several Egyptian cultivars including Gemmeiza-12. Confocal fluorescence microscopy demonstrated that growth of the IPO323 strain is blocked at the point of stomatal penetration on Gemmeiza-12, consistent with previous reports of Stb gene mediated resistance. In addition to this R-gene mediated resistance, IPO323 spores showed lower adherence to leaves of Gemmeiza-12 compared to UK wheat varieties, suggesting other aspects of leaf physiology may also contribute to the resistance phenotype of this cultivar. Conclusion: These results indicate that Gemmeiza-12 will be useful in future breeding programs where improved resistance to Z. tritici is a priority

    Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations

    Get PDF
    RenSeq is a NB-LRR (nucleotide binding-site leucine-rich repeat) gene-targeted, Resistance gene enrichment and sequencing method that enables discovery and annotation of pathogen resistance gene family members in plant genome sequences. We successfully applied RenSeq to the sequenced potato Solanum tuberosum clone DM, and increased the number of identified NB-LRRs from 438 to 755. The majority of these identified R gene loci reside in poorly or previously unannotated regions of the genome. Sequence and positional details on the 12 chromosomes have been established for 704 NB-LRRs and can be accessed through a genome browser that we provide. We compared these NB-LRR genes and the corresponding oligonucleotide baits with the highest sequence similarity and demonstrated that ~80% sequence identity is sufficient for enrichment. Analysis of the sequenced tomato S. lycopersicum ‘Heinz 1706’ extended the NB-LRR complement to 394 loci. We further describe a methodology that applies RenSeq to rapidly identify molecular markers that co-segregate with a pathogen resistance trait of interest. In two independent segregating populations involving the wild Solanum species S. berthaultii (Rpi-ber2) and S. ruiz-ceballosii (Rpi-rzc1), we were able to apply RenSeq successfully to identify markers that co-segregate with resistance towards the late blight pathogen Phytophthora infestans. These SNP identification workflows were designed as easy-to-adapt Galaxy pipelines

    A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding

    Get PDF
    Consensus linkage maps are important tools in crop genomics. We have assembled a highdensity tetraploid wheat consensus map by integrating 13 data sets from independent biparental populations involving durum wheat cultivars (Triticum turgidum ssp. durum), cultivated emmer (T. turgidum ssp. dicoccum) and their ancestor (wild emmer, T. turgidum ssp. dicoccoides). The consensus map harboured 30 144 markers (including 26 626 SNPs and 791 SSRs) half of which were present in at least two component maps. The final map spanned 2631 cM of all 14 durum wheat chromosomes and, differently from the individual component maps, all markers fell within the 14 linkage groups. Marker density per genetic distance unit peaked at centromeric regions, likely due to a combination of low recombination rate in the centromeric regions and even gene distribution along the chromosomes. Comparisons with bread wheat indicated fewer regions with recombination suppression, making this consensus map valuable for mapping in the A and B genomes of both durum and bread wheat. Sequence similarity analysis allowed us to relate mapped gene-derived SNPs to chromosome-specific transcripts. Dense patterns of homeologous relationships have been established between the A- and B-genome maps and between nonsyntenic homeologous chromosome regions as well, the latter tracing to ancient translocation events. The gene-based homeologous relationships are valuable to infer the map location of homeologs of target loci/QTLs. Because most SNP and SSR markers were previously mapped in bread wheat, this consensus map will facilitate a more effective integration and exploitation of genes and QTL for wheat breeding purposes

    Next generation characterisation of cereal genomes for marker discovery

    Get PDF
    Cereal crops form the bulk of the world's food sources and thus their importance cannot be understated. Crop breeding programs increasingly rely on high-resolution molecular genetic markers to accelerate the breeding process. The development of these markers is hampered by the complexity of some of the major cereal crop genomes, as well as the time and cost required. In this review, we address current and future methods available for the characterisation of cereal genomes, with an emphasis on faster and more cost effective approaches for genome sequencing and the development of markers for trait association and marker assisted selection (MAS) in crop breeding programs

    Targeted sequencing for high-resolution evolutionary analyses following genome duplication in salmonid fish:Proof of concept for key components of the insulin-like growth factor axis

    Get PDF
    Acknowledgements This study was funded by a Natural Environment Research Council grant (NERC, project code: NBAF704). FML is funded by a NERC Doctoral Training Grant (Project Reference: NE/L50175X/1). RLS was an undergraduate student at the University of Aberdeen and benefitted from financial support from the School of Biological Sciences. DJM is indebted to Dr. Steven Weiss (University of Graz, Austria), Dr. Takashi Yada (National Research Institute of Fisheries Science, Japan), Dr. Robert Devlin (Fisheries and Oceans Canada, Canada), Prof. Samuel Martin (University of Aberdeen, UK), Mr. Neil Lincoln (Environment Agency, UK) and Prof. Colin Adams/Mr. Stuart Wilson (University of Glasgow, UK) for providing salmonid material or assisting with its sampling. We are grateful to staff at the Centre for Genomics Research (University of Liverpool, UK) (i.e. NERC Biomolecular Analysis Facility – Liverpool; NBAF-Liverpool) for performing sequence capture/Illumina sequencing and providing us with details on associated methods that were incorporated into the manuscript. Finally, we are grateful to the organizers of the Society of Experimental Biology Satellite meeting 'Genome-powered perspectives in integrative physiology and evolutionary biology' (held in Prague, July 2015) for inviting us to contribute to this special edition of Marine Genomics and hosting a really stimulating meeting.Peer reviewedPublisher PD

    Fine-Scale Population Recombination Rates, Hotspots, and Correlates of Recombination in the Medicago truncatula Genome

    Get PDF
    Recombination rates vary across the genome and in many species show significant relationships with several genomic features, including distance to the centromere, gene density, and GC content. Studies of fine-scale recombination rates have also revealed that in several species, there are recombination hotspots, that is, short regions with recombination rates 10–100 greater than those in surrounding regions. In this study, we analyzed whole-genome resequence data from 26 accessions of the model legume Medicago truncatula to gain insight into the genomic features that are related to high- and low-recombination rates and recombination hotspots at 1 kb scales. We found that high-recombination regions (1-kb windows among those in the highest 5% of the distribution) on all three chromosomes were significantly closer to the centromere, had higher gene density, and lower GC content than low-recombination windows. High-recombination windows are also significantly overrepresented among some gene functional categories—most strongly NB–ARC and LRR genes, both of which are important in plant defense against pathogens. Similar to high-recombination windows, recombination hotspots (1-kb windows with significantly higher recombination than the surrounding region) are significantly nearer to the centromere than nonhotspot windows. By contrast, we detected no difference in gene density or GC content between hotspot and nonhotspot windows. Using linear model wavelet analysis to examine the relationship between recombination and genomic features across multiple spatial scales, we find a significant negative correlation with distance to the centromere across scales up to 512 kb, whereas gene density and GC content show significantly positive and negative correlations, respectively, only up to 64 kb. Correlations between recombination and genomic features, particularly gene density and polymorphism, suggest that they are scale dependent and need to be assessed at scales relevant to the evolution of those features
    corecore