62 research outputs found

    Re‐programming and optimization of a L‐proline cis‐4‐hydroxylase for the cis‐3‐halogenation of its native substrate

    Get PDF
    Non-heme iron/ α -ketoglutarate dependent halogenases acting on freestanding substrates catalyze the regio- and stereoselective halogenation of inactivated C(sp 3 )-H bonds. Yet, with only a handful of these halogenases characterized, the biosynthetic potential of enzymatic radical halogenation remains limited. Herein, we describe the remodeling of L -proline cis -4-hydroxylase from Sinorhizobium meliloti into a halogenase by introduction of a single point mutation ( D108G) into the enzyme’s active site. The re-programmed halogenase displays a striking regio-divergent reaction chemistry: While halogenation of L -proline exclusively occurs at the C3-position, the retained hydroxylation activity leads to derivatization at the C-4 position, corresponding to the regioselectivity of the wildtype enzyme. By employing several rounds of directed evolution, an optimized halogenase variant with 98-fold improved apparent k cat / K m for chlorination of L -proline compared to the parental enzyme SmP4H ( D108G) was identified. The development and optimization of this novel halogenation biocatalyst highlights the possibility to rationally harness the chemical versatility of non-heme Fe/ α KG dependent dioxygenases for C-H functionalization

    Erythrocyte G Protein as a Novel Target for Malarial Chemotherapy

    Get PDF
    BACKGROUND: Malaria remains a serious health problem because resistance develops to all currently used drugs when their parasite targets mutate. Novel antimalarial drug targets are urgently needed to reduce global morbidity and mortality. Our prior results suggested that inhibiting erythrocyte G(s) signaling blocked invasion by the human malaria parasite Plasmodium falciparum. METHODS AND FINDINGS: We investigated the erythrocyte guanine nucleotide regulatory protein G(s) as a novel antimalarial target. Erythrocyte “ghosts” loaded with a G(s) peptide designed to block G(s) interaction with its receptors, were blocked in ÎČ-adrenergic agonist-induced signaling. This finding directly demonstrates that erythrocyte G(s) is functional and that propranolol, an antagonist of G protein–coupled ÎČ-adrenergic receptors, dampens G(s) activity in erythrocytes. We subsequently used the ghost system to directly link inhibition of host G(s) to parasite entry. In addition, we discovered that ghosts loaded with the peptide were inhibited in intracellular parasite maturation. Propranolol also inhibited blood-stage parasite growth, as did other ÎČ(2)-antagonists. ÎČ-blocker growth inhibition appeared to be due to delay in the terminal schizont stage. When used in combination with existing antimalarials in cell culture, propranolol reduced the 50% and 90% inhibitory concentrations for existing drugs against P. falciparum by 5- to 10-fold and was also effective in reducing drug dose in animal models of infection. CONCLUSIONS: Together these data establish that, in addition to invasion, erythrocyte G protein signaling is needed for intracellular parasite proliferation and thus may present a novel antimalarial target. The results provide proof of the concept that erythrocyte G(s) antagonism offers a novel strategy to fight infection and that it has potential to be used to develop combination therapies with existing antimalarials

    AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations

    Get PDF
    Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the state-of-the-art modelling of aerosol optical properties is assessed from 14 global models participating in the phase III control experiment (AP3). The models are similar to CMIP6/AerChemMIP Earth System Models (ESMs) and provide a robust multi-model ensemble. Inter-model spread of aerosol species lifetimes and emissions appears to be similar to that of mass extinction coefficients (MECs), suggesting that aerosol optical depth (AOD) uncertainties are associated with a broad spectrum of parameterised aerosol processes. Total AOD is approximately the same as in AeroCom phase I (AP1) simulations. However, we find a 50% decrease in the optical depth (OD) of black carbon (BC), attributable to a combination of decreased emissions and lifetimes. Relative contributions from sea salt (SS) and dust (DU) have shifted from being approximately equal in AP1 to SS contributing about 2/3 of the natural AOD in AP3. This shift is linked with a decrease in DU mass burden, a lower DU MEC, and a slight decrease in DU lifetime, suggesting coarser DU particle sizes in AP3 compared to AP1. Relative to observations, the AP3 ensemble median and most of the participating models underestimate all aerosol optical properties investigated, that is, total AOD as well as fine and coarse AOD (AOD(f), AOD(c)), Angstrom exponent (AE), dry surface scattering (SCdry), and absorption (AC(dry)) coefficients. Compared to AERONET, the models underestimate total AOD by ca. 21% +/- 20% (as inferred from the ensemble median and interquartile range). Against satellite data, the ensemble AOD biases range from -37% (MODIS-Terra) to -16% (MERGED-FMI, a multi-satellite AOD product), which we explain by differences between individual satellites and AERONET measurements themselves. Correlation coefficients (R) between model and observation AOD records are generally high (R > 0.75), suggesting that the models are capable of capturing spatiotemporal variations in AOD. We find a much larger underestimate in coarse AOD(c) (similar to-45% +/- 25 %) than in fine AOD(f) (similar to-15% +/- 25 %) with slightly increased inter-model spread compared to total AOD. These results indicate problems in the modelling of DU and SS. The AOD(c) bias is likely due to missing DU over continental land masses (particularly over the United States, SE Asia, and S. America), while marine AERONET sites and the AATSR SU satellite data suggest more moderate oceanic biases in AOD(c). Column AEs are underestimated by about 10% +/- 16 %. For situations in which measurements show AE > 2, models underestimate AERONET AE by ca. 35 %. In contrast, all models (but one) exhibit large overestimates in AE when coarse aerosol dominates (bias ca. +140% if observed AE < 0.5). Simulated AE does not span the observed AE variability. These results indicate that models overestimate particle size (or underestimate the fine-mode fraction) for fine-dominated aerosol and underestimate size (or overestimate the fine-mode fraction) for coarse-dominated aerosol. This must have implications for lifetime, water uptake, scattering enhancement, and the aerosol radiative effect, which we can not quantify at this moment. Comparison against Global Atmosphere Watch (GAW) in situ data results in mean bias and inter-model variations of -35% +/- 25% and -20% +/- 18% for SCdry and AC(dry), respectively. The larger underestimate of SCdry than AC(dry) suggests the models will simulate an aerosol single scattering albedo that is too low. The larger underestimate of SCdry than ambient air AOD is consistent with recent findings that models overestimate scattering enhancement due to hygroscopic growth. The broadly consistent negative bias in AOD and surface scattering suggests an underestimate of aerosol radiative effects in current global aerosol models. Considerable inter-model diversity in the simulated optical properties is often found in regions that are, unfortunately, not or only sparsely covered by ground-based observations. This includes, for instance, the Sahara, Amazonia, central Australia, and the South Pacific. This highlights the need for a better site coverage in the observations, which would enable us to better assess the models, but also the performance of satellite products in these regions. Using fine-mode AOD as a proxy for present-day aerosol forcing estimates, our results suggest that models underestimate aerosol forcing by ca. -15 %, however, with a considerably large interquartile range, suggesting a spread between -35% and +10 %.Peer reviewe

    The Neutron star Interior Composition Explorer (NICER): design and development

    Get PDF

    Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro–in vivo gap

    Full text link

    Role of Host Cell Secretory Machinery in Zika Virus Life Cycle

    No full text
    The high human cost of Zika virus infections and the rapid establishment of virus circulation in novel areas, including the United States, present an urgent need for countermeasures against this emerging threat. The development of an effective vaccine against Zika virus may be problematic because of the cross reactivity of the antibodies with other flaviviruses leading to antibody-dependent enhancement of infection. Moreover, rapidly replicating positive strand RNA viruses, including Zika virus, generate large spectrum of mutant genomes (quasi species) every replication round, allowing rapid selection of variants resistant to drugs targeting virus-specific proteins. On the other hand, viruses are ultimate cellular parasites and rely on the host metabolism for every step of their life cycle, thus presenting an opportunity to manipulate host processes as an alternative approach to suppress virus replication and spread. Zika and other flaviviruses critically depend on the cellular secretory pathway, which transfers proteins and membranes from the ER through the Golgi to the plasma membrane, for virion assembly, maturation and release. In this review, we summarize the current knowledge of interactions of Zika and similar arthropod-borne flaviviruses with the cellular secretory machinery with a special emphasis on virus-specific changes of the secretory pathway. Identification of the regulatory networks and effector proteins required to accommodate the trafficking of virions, which represent a highly unusual cargo for the secretory pathway, may open an attractive and virtually untapped reservoir of alternative targets for the development of superior anti-viral drugs

    Re-programming and optimization of a L-proline cis-4-hydroxylase for the cis-3-halogenation of its native substrate

    No full text
    Freestanding non-heme iron/α-ketoglutarate dependent halogenases enable the regio- and stereoselective halogenation of inactivated C(sp3)-H bonds. Yet, with only a handful of these halogenases characterized, the biosynthetic potential of enzymatic radical halogenation remains limited. Herein, we describe the remodeling of L-proline cis-4-hydroxylase from Sinorhizobium meliloti into a halogenase by introduction of a single point mutation into the enzyme’s active site (D108G). The re-programmed halogenase displays a striking regio-divergent reaction chemistry: While halogenation of L-proline exclusively occurs at the C3-position, the retained hydroxylation activity leads to derivatization at the C-4 position, corresponding to the regioselectivity of the wildtype enzyme. By employing several rounds of directed evolution, an optimized halogenase variant with 98-fold improved apparent kcat / Km for chlorination of L-proline compared to the parental enzyme SmP4H (D108G) was identified. The development and optimization of this novel halogenation biocatalyst highlights the possibility to rationally harness the chemical versatility of non-heme Fe/αKG dependent dioxygenases for C-H functionalization
    • 

    corecore