14 research outputs found

    Valorization of artichoke wastewaters by integrated membrane process

    Full text link
    In this work an integrated membrane system was developed on laboratory scale to fractionate artichoke wastewaters. In particular, a preliminary ultrafiltration (UF) step, based on the use of hollow fibre membranes, was investigated to remove suspended solids from an artichoke extract. The clarified solution was then submitted to a nanofiltration (NF) step. Two different 2.5 × 21 in. spiral-wound membranes (Desal DL and NP030) with different properties were investigated. Both membranes showed a high rejection towards the phenolic compounds analysed (chlorogenic acid, cynarin and apigenin-7-O-glucoside) and, consequently, towards the total antioxidant activity (TAA). On the other hand, the Desal DL membrane was characterized by a high rejection towards sugar compounds (glucose, fructose and sucrose) (100%) when compared with the NP030 membrane (4.02%). The performance of selected membranes in terms of permeate flux, fouling index and water permeability recovery was also evaluated. On the base of experimental results, an integrated membrane process for the fractionation of artichoke wastewaters was proposed. This conceptual process design permitted to obtain different valuable products: a retentate fraction (from the NP030 membrane) enriched in phenolic compounds suitable for nutraceutical, cosmeceutical or food application; a retentate fraction (from the Desal DL membrane), enriched in sugar compounds, of interest for food applications; a clear permeate (from the Desal DL membrane) which can be reused as process water or for membrane cleaning.Conidi, C.; Cassano, A.; García Castelló, EM. (2014). Valorization of artichoke wastewaters by integrated membrane process. Water Research. 48:363-374. doi:10.1016/j.watres.2013.09.047S3633744

    The seasonal variations in inulin and reducing sugar in Jerusalem artichoke ‘KKU 50-4’

    No full text

    Parallel evolution in an invasive plant: effect of herbivores on competitive ability and regrowth of Jacobaea vulgaris

    No full text
    A shift in the composition of the herbivore guild in the invasive range is expected to select for plants with a higher competitive ability, a lower regrowth capacity and a lower investment in defence. We show here that parallel evolution took place in three geographically distinct invasive regions that differed significantly in climatic conditions. This makes it most likely that indeed the shifts in herbivore guilds were causal to the evolutionary changes. We studied competitive ability and regrowth of invasive and native Jacobaea vulgaris using an intraspecific competition set-up with and without herbivory. Without herbivores invasive genotypes have a higher competitive ability than native genotypes. The invasive genotypes were less preferred by the generalist Mamestra brassicae but more preferred by the specialist Tyria jacobaeae, consequently their competitive ability was significantly increased by the first and reduced by the latter. Invasive genotypes showed a lower regrowth ability in both herbivore treatments.Plant science
    corecore