78 research outputs found

    Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations

    Full text link
    [EN] Gene duplication generates new genetic material, which has been shown to lead to major innovations in unicellular and multicellular organisms. A whole-genome duplication occurred in the ancestor of Saccharomyces yeast species but 92% of duplicates returned to single-copy genes shortly after duplication. The persisting duplicated genes in Saccharomyces led to the origin of major metabolic innovations, which have been the source of the unique biotechnological capabilities in the Baker's yeast Saccharomyces cerevisiae. What factors have determined the fate of duplicated genes remains unknown. Here, we report the first demonstration that the local genome mutation and transcription rates determine the fate of duplicates. We show, for the first time, a preferential location of duplicated genes in the mutational and transcriptional hotspots of S. cerevisiae genome. The mechanism of duplication matters, with whole-genome duplicates exhibiting different preservation trends compared to small-scale duplicates. Genome mutational and transcriptional hotspots are rich in duplicates with large repetitive promoter elements. Saccharomyces cerevisiae shows more tolerance to deleterious mutations in duplicates with repetitive promoter elements, which in turn exhibit higher transcriptional plasticity against environmental perturbations. Our data demonstrate that the genome traps duplicates through the accelerated regulatory and functional divergence of their gene copies providing a source of novel adaptations in yeast.This study was supported by a grant (reference: FEDER-BFU2015-66073-P) from the Spanish Ministerio de Economia y Competitividad-FEDER and a grant (reference: ACOMP/2015/026) from the local government Conselleria de Educacion Investigacion, Cultura y Deporte, Generalitat Valenciana to M.A.F. C.T. was supported by a grant Juan de la Cierva from the Spanish Ministerio de Economia y Competitividad (reference: JCA-2012-14056).Fares Riaño, MA.; Sabater-Muñoz, B.; Toft, C. (2017). Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations. Genome Biology and Evolution. 9(5):1229-1240. https://doi.org/10.1093/gbe/evx085S1229124095Agier, N., & Fischer, G. (2011). The Mutational Profile of the Yeast Genome Is Shaped by Replication. Molecular Biology and Evolution, 29(3), 905-913. doi:10.1093/molbev/msr280Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11(10). doi:10.1186/gb-2010-11-10-r106Berry, D. B., & Gasch, A. P. (2008). Stress-activated Genomic Expression Changes Serve a Preparative Role for Impending Stress in Yeast. Molecular Biology of the Cell, 19(11), 4580-4587. doi:10.1091/mbc.e07-07-0680Birchler, J. A., Bhadra, U., Bhadra, M. P., & Auger, D. L. (2001). Dosage-Dependent Gene Regulation in Multicellular Eukaryotes: Implications for Dosage Compensation, Aneuploid Syndromes, and Quantitative Traits. Developmental Biology, 234(2), 275-288. doi:10.1006/dbio.2001.0262Birchler, J. A., Riddle, N. C., Auger, D. L., & Veitia, R. A. (2005). Dosage balance in gene regulation: biological implications. Trends in Genetics, 21(4), 219-226. doi:10.1016/j.tig.2005.02.010Birchler, J. A., & Veitia, R. A. (2012). Gene balance hypothesis: Connecting issues of dosage sensitivity across biological disciplines. Proceedings of the National Academy of Sciences, 109(37), 14746-14753. doi:10.1073/pnas.1207726109Bro, C., Regenberg, B., Lagniel, G., Labarre, J., Montero-LomelĂ­, M., & Nielsen, J. (2003). Transcriptional, Proteomic, and Metabolic Responses to Lithium in Galactose-grown Yeast Cells. Journal of Biological Chemistry, 278(34), 32141-32149. doi:10.1074/jbc.m304478200Byrne, K. P. (2005). The Yeast Gene Order Browser: Combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Research, 15(10), 1456-1461. doi:10.1101/gr.3672305Carretero-Paulet, L., & Fares, M. A. (2012). Evolutionary Dynamics and Functional Specialization of Plant Paralogs Formed by Whole and Small-Scale Genome Duplications. Molecular Biology and Evolution, 29(11), 3541-3551. doi:10.1093/molbev/mss162Casamayor, A., Serrano, R., Platara, M., Casado, C., Ruiz, A., & Ariño, J. (2012). The role of the Snf1 kinase in the adaptive response of Saccharomyces cerevisiae to alkaline pH stress. Biochemical Journal, 444(1), 39-49. doi:10.1042/bj20112099Chuang, J. H., & Li, H. (2004). Functional Bias and Spatial Organization of Genes in Mutational Hot and Cold Regions in the Human Genome. PLoS Biology, 2(2), e29. doi:10.1371/journal.pbio.0020029Clark, A. G. (1994). Invasion and maintenance of a gene duplication. Proceedings of the National Academy of Sciences, 91(8), 2950-2954. doi:10.1073/pnas.91.8.2950Conant, G. C., & Wolfe, K. H. (2008). Turning a hobby into a job: How duplicated genes find new functions. Nature Reviews Genetics, 9(12), 938-950. doi:10.1038/nrg2482Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., 
 Mostafavi, S. (2010). The Genetic Landscape of a Cell. Science, 327(5964), 425-431. doi:10.1126/science.1180823Deatherage, D. E., & Barrick, J. E. (2014). Identification of Mutations in Laboratory-Evolved Microbes from Next-Generation Sequencing Data Using breseq. Engineering and Analyzing Multicellular Systems, 165-188. doi:10.1007/978-1-4939-0554-6_12Fares, M. A. (2015). The origins of mutational robustness. Trends in Genetics, 31(7), 373-381. doi:10.1016/j.tig.2015.04.008Fares, M. A., Keane, O. M., Toft, C., Carretero-Paulet, L., & Jones, G. W. (2013). The Roles of Whole-Genome and Small-Scale Duplications in the Functional Specialization of Saccharomyces cerevisiae Genes. PLoS Genetics, 9(1), e1003176. doi:10.1371/journal.pgen.1003176Freeling, M. (2006). Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Research, 16(7), 805-814. doi:10.1101/gr.3681406GarcĂ­a-RodrĂ­guez, N., DĂ­az de la Loza, M. del C., Andreson, B., Monje-Casas, F., Rothstein, R., & Wellinger, R. E. (2012). Impaired Manganese Metabolism Causes Mitotic Misregulation. Journal of Biological Chemistry, 287(22), 18717-18729. doi:10.1074/jbc.m112.358309Gemayel, R., Vinces, M. D., Legendre, M., & Verstrepen, K. J. (2010). Variable Tandem Repeats Accelerate Evolution of Coding and Regulatory Sequences. Annual Review of Genetics, 44(1), 445-477. doi:10.1146/annurev-genet-072610-155046Gout, J.-F., Duret, L., & Kahn, D. (2009). Differential Retention of Metabolic Genes Following Whole-Genome Duplication. Molecular Biology and Evolution, 26(5), 1067-1072. doi:10.1093/molbev/msp026Gout, J.-F., Kahn, D., & Duret, L. (2010). The Relationship among Gene Expression, the Evolution of Gene Dosage, and the Rate of Protein Evolution. PLoS Genetics, 6(5), e1000944. doi:10.1371/journal.pgen.1000944Gout, J.-F., & Lynch, M. (2015). Maintenance and Loss of Duplicated Genes by Dosage Subfunctionalization. Molecular Biology and Evolution, 32(8), 2141-2148. doi:10.1093/molbev/msv095Guan, Y., Dunham, M. J., & Troyanskaya, O. G. (2006). Functional Analysis of Gene Duplications inSaccharomyces cerevisiae. Genetics, 175(2), 933-943. doi:10.1534/genetics.106.064329Ibba, M. (1999). Quality Control Mechanisms During Translation. Science, 286(5446), 1893-1897. doi:10.1126/science.286.5446.1893Jansen, M. L. A., Diderich, J. A., Mashego, M., Hassane, A., de Winde, J. H., Daran-Lapujade, P., & Pronk, J. T. (2005). Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity. Microbiology, 151(5), 1657-1669. doi:10.1099/mic.0.27577-0Kafri, R., Bar-Even, A., & Pilpel, Y. (2005). Transcription control reprogramming in genetic backup circuits. Nature Genetics, 37(3), 295-299. doi:10.1038/ng1523Keane, O. M., Toft, C., Carretero-Paulet, L., Jones, G. W., & Fares, M. A. (2014). Preservation of genetic and regulatory robustness in ancient gene duplicates ofSaccharomyces cerevisiae. Genome Research, 24(11), 1830-1841. doi:10.1101/gr.176792.114Kimura, M., & Takahata, N. (1983). Selective constraint in protein polymorphism: Study of the effectively neutral mutation model by using an improved pseudosampling method. Proceedings of the National Academy of Sciences, 80(4), 1048-1052. doi:10.1073/pnas.80.4.1048Lang, G. I., & Murray, A. W. (2011). Mutation Rates across Budding Yeast Chromosome VI Are Correlated with Replication Timing. Genome Biology and Evolution, 3, 799-811. doi:10.1093/gbe/evr054LaRiviere, F. J. (2001). Uniform Binding of Aminoacyl-tRNAs to Elongation Factor Tu by Thermodynamic Compensation. Science, 294(5540), 165-168. doi:10.1126/science.1064242Liti, G., Carter, D. M., Moses, A. M., Warringer, J., Parts, L., James, S. A., 
 Louis, E. J. (2009). Population genomics of domestic and wild yeasts. Nature, 458(7236), 337-341. doi:10.1038/nature07743Lohse, M., Bolger, A. M., Nagel, A., Fernie, A. R., Lunn, J. E., Stitt, M., & Usadel, B. (2012). RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Research, 40(W1), W622-W627. doi:10.1093/nar/gks540Makino, T., McLysaght, A., & Kawata, M. (2013). Genome-wide deserts for copy number variation in vertebrates. Nature Communications, 4(1). doi:10.1038/ncomms3283Marcet-Houben, M., & GabaldĂłn, T. (2015). Beyond the Whole-Genome Duplication: Phylogenetic Evidence for an Ancient Interspecies Hybridization in the Baker’s Yeast Lineage. PLOS Biology, 13(8), e1002220. doi:10.1371/journal.pbio.1002220Martin, P., Makepeace, K., Hill, S. A., Hood, D. W., & Moxon, E. R. (2005). Microsatellite instability regulates transcription factor binding and gene expression. Proceedings of the National Academy of Sciences, 102(10), 3800-3804. doi:10.1073/pnas.0406805102Mattenberger, F., Sabater-Muñoz, B., Hallsworth, J. E., & Fares, M. A. (2017). Glycerol stress inSaccharomyces cerevisiae: Cellular responses and evolved adaptations. Environmental Microbiology, 19(3), 990-1007. doi:10.1111/1462-2920.13603Mattenberger, F., Sabater-Muñoz, B., Toft, C., & Fares, M. A. (2016). The Phenotypic Plasticity of Duplicated Genes in Saccharomyces cerevisiae and the Origin of Adaptations. G3: Genes|Genomes|Genetics, 7(1), 63-75. doi:10.1534/g3.116.035329Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., & Snyder, M. (2008). The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing. Science, 320(5881), 1344-1349. doi:10.1126/science.1158441O’Hely, M. (2006). A Diffusion Approach to Approximating Preservation Probabilities for Gene Duplicates. Journal of Mathematical Biology, 53(2), 215-230. doi:10.1007/s00285-006-0001-6Ohno, S. (1999). Gene duplication and the uniqueness of vertebrate genomes circa 1970–1999. Seminars in Cell & Developmental Biology, 10(5), 517-522. doi:10.1006/scdb.1999.0332Papp, B., PĂĄl, C., & Hurst, L. D. (2003). Dosage sensitivity and the evolution of gene families in yeast. Nature, 424(6945), 194-197. doi:10.1038/nature01771Park, C., Qian, W., & Zhang, J. (2012). Genomic evidence for elevated mutation rates in highly expressed genes. EMBO reports, 13(12), 1123-1129. doi:10.1038/embor.2012.165Payne, J. L., & Wagner, A. (2014). The Robustness and Evolvability of Transcription Factor Binding Sites. Science, 343(6173), 875-877. doi:10.1126/science.1249046Pu, S., Wong, J., Turner, B., Cho, E., & Wodak, S. J. (2008). Up-to-date catalogues of yeast protein complexes. Nucleic Acids Research, 37(3), 825-831. doi:10.1093/nar/gkn1005Qian, W., Liao, B.-Y., Chang, A. Y.-F., & Zhang, J. (2010). Maintenance of duplicate genes and their functional redundancy by reduced expression. Trends in Genetics, 26(10), 425-430. doi:10.1016/j.tig.2010.07.002Raghuraman, M. K. (2001). Replication Dynamics of the Yeast Genome. Science, 294(5540), 115-121. doi:10.1126/science.294.5540.115Rando, O. J., & Verstrepen, K. J. (2007). Timescales of Genetic and Epigenetic Inheritance. Cell, 128(4), 655-668. doi:10.1016/j.cell.2007.01.023Reynolds, N. M., Ling, J., Roy, H., Banerjee, R., Repasky, S. E., Hamel, P., & Ibba, M. (2010). Cell-specific differences in the requirements for translation quality control. Proceedings of the National Academy of Sciences, 107(9), 4063-4068. doi:10.1073/pnas.0909640107Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616Rockman, M. V., & Wray, G. A. (2002). Abundant Raw Material for Cis-Regulatory Evolution in Humans. Molecular Biology and Evolution, 19(11), 1991-2004. doi:10.1093/oxfordjournals.molbev.a004023Ruan, B., Palioura, S., Sabina, J., Marvin-Guy, L., Kochhar, S., LaRossa, R. A., & Soll, D. (2008). Quality control despite mistranslation caused by an ambiguous genetic code. Proceedings of the National Academy of Sciences, 105(43), 16502-16507. doi:10.1073/pnas.0809179105Schuster-Böckler, B., & Lehner, B. (2012). Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature, 488(7412), 504-507. doi:10.1038/nature11273Seoighe, C., & Wolfe, K. H. (1999). Yeast genome evolution in the post-genome era. Current Opinion in Microbiology, 2(5), 548-554. doi:10.1016/s1369-5274(99)00015-6Streelman, J. T., & Kocher, T. D. (2002). Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia. Physiological Genomics, 9(1), 1-4. doi:10.1152/physiolgenomics.00105.2001Supek, F., & Lehner, B. (2015). Differential DNA mismatch repair underlies mutation rate variation across the human genome. Nature, 521(7550), 81-84. doi:10.1038/nature14173Taylor, J. S., & Raes, J. (2004). Duplication and Divergence: The Evolution of New Genes and Old Ideas. Annual Review of Genetics, 38(1), 615-643. doi:10.1146/annurev.genet.38.072902.092831Tirosh, I., Barkai, N., & Verstrepen, K. J. (2009). Promoter architecture and the evolvability of gene expression. Journal of Biology, 8(11), 95. doi:10.1186/jbiol204Tong, A. H. Y. (2001). Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants. Science, 294(5550), 2364-2368. doi:10.1126/science.1065810Vinces, M. D., Legendre, M., Caldara, M., Hagihara, M., & Verstrepen, K. J. (2009). Unstable Tandem Repeats in Promoters Confer Transcriptional Evolvability. Science, 324(5931), 1213-1216. doi:10.1126/science.1170097Wapinski, I., Pfeffer, A., Friedman, N., & Regev, A. (2007). Natural history and evolutionary principles of gene duplication in fungi. Nature, 449(7158), 54-61. doi:10.1038/nature06107Wolfe, K. H., & Shields, D. C. (1997). Molecular evidence for an ancient duplication of the entire yeast genome. Nature, 387(6634), 708-713. doi:10.1038/42711Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. doi:10.1093/molbev/msm088Zaher, H. S., & Green, R. (2008). Quality control by the ribosome following peptide bond formation. Nature, 457(7226), 161-166. doi:10.1038/nature0758

    Cardiopulmonary Exercise Test in Patients with Hypertrophic Cardiomyopathy: A Systematic Review and Meta-Analysis.

    Get PDF
    BACKGROUND: Patients with chronic diseases frequently adapt their lifestyles to their functional limitations. Functional capacity in Hypertrophic Cardiomyopathy (HCM) can be assessed by stress testing. We aim to review and analyze the available data from the literature on the value of Cardiopulmonary Exercise Test (CPET) in HCM. Objective measurements from CPET are used for evaluation of patient response to traditional and new developing therapeutic measurements. METHODS: A systematic review of the literature was conducted in PubMed, Web of Science and Cochrane in Mar-20. The original search yielded 2628 results. One hundred and two full texts were read after the first screening, of which, 69 were included for qualitative synthesis. Relevant variables to be included in the review were set and 17 were selected, including comorbidities, body mass index (BMI), cardiac-related symptoms, echocardiographic variables, medications and outcomes. RESULTS: Study sample consisted of 69 research articles, including 11,672 patients (48 ± 14 years old, 65.9%/34.1% men/women). Treadmill was the most common instrument employed (n = 37 studies), followed by upright cycle-ergometer (n = 16 studies). Mean maximal oxygen consumption (VO2max) was 22.3 ± 3.8 mL·kg-1·min-1. The highest average values were observed in supine and upright cycle-ergometer (25.3 ± 6.5 and 24.8 ± 9.1 mL·kg-1·min-1; respectively). Oxygen consumption in the anaerobic threshold (ATVO2) was reported in 18 publications. Left ventricular outflow tract gradient (LVOT) > 30 mmHg was present at baseline in 31.4% of cases. It increased to 49% during exercise. Proportion of abnormal blood pressure response (ABPRE) was higher in severe (>20 mm) vs. mild hypertrophy groups (17.9% vs. 13.6%, p < 0.001). Mean VO2max was not significantly different between severe vs. milder hypertrophy, or for obstructive vs. non-obstructive groups. Occurrence of arrhythmias during functional assessment was higher among younger adults (5.42% vs. 1.69% in older adults, p < 0.001). Twenty-three publications (9145 patients) evaluated the prognostic value of exercise capacity. There were 8.5% total deaths, 6.7% cardiovascular deaths, 3.0% sudden cardiac deaths (SCD), 1.2% heart failure death, 0.6% resuscitated cardiac arrests, 1.1% transplants, 2.6% implantable cardioverter defibrillator (ICD) therapies and 1.2 strokes (mean follow-up: 3.81 ± 2.77 years). VO2max, ATVO2, METs, % of age-gender predicted VO2max, % of age-gender predicted METs, ABPRE and ventricular arrhythmias were significantly associated with major outcomes individually. Mean VO2max was reduced in patients who reached the combined cardiovascular death outcome compared to those who survived (-6.20 mL·kg-1·min-1; CI 95%: -7.95, -4.46; p < 0.01). CONCLUSIONS: CPET is a valuable tool and can safely perform for assessment of physical functional capacity in patients with HCM. VO2max is the most common performance measurement evaluated in functional studies, showing higher values in those based on cycle-ergometer compared to treadmill. Subgroup analysis shows that exercise intolerance seems to be more related to age, medication and comorbidities than HCM phenotype itself. Lower VO2max is consistently seen in HCM patients at major cardiovascular risk

    Polyphenol intake and mortality risk: a re-analysis of the PREDIMED trial

    Get PDF
    Background: Polyphenols may lower the risk of cardiovascular disease (CVD) and other chronic diseases due to their antioxidant and anti-inflammatory properties, as well as their beneficial effects on blood pressure, lipids and insulin resistance. However, no previous epidemiological studies have evaluated the relationship between the intake of total polyphenols intake and polyphenol subclasses with overall mortality. Our aim was to evaluate whether polyphenol intake is associated with all-cause mortality in subjects at high cardiovascular risk. Methods: We used data from the PREDIMED study, a 7,447-participant, parallel-group, randomized, multicenter, controlled five-year feeding trial aimed at assessing the effects of the Mediterranean Diet in primary prevention of cardiovascular disease. Polyphenol intake was calculated by matching food consumption data from repeated food frequency questionnaires (FFQ) with the Phenol-Explorer database on the polyphenol content of each reported food. Hazard ratios (HR) and 95% confidence intervals (CI) between polyphenol intake and mortality were estimated using time-dependent Cox proportional hazard models. Results: Over an average of 4.8 years of follow-up, we observed 327 deaths. After multivariate adjustment, we found a 37% relative reduction in all-cause mortality comparing the highest versus the lowest quintiles of total polyphenol intake (hazard ratio (HR) = 0.63; 95% CI 0.41 to 0.97; P for trend = 0.12). Among the polyphenol subclasses, stilbenes and lignans were significantly associated with reduced all-cause mortality (HR =0.48; 95% CI 0.25 to 0.91; P for trend = 0.04 and HR = 0.60; 95% CI 0.37 to 0.97; P for trend = 0.03, respectively), with no significant associations apparent in the rest (flavonoids or phenolic acids). Conclusions: Among high-risk subjects, those who reported a high polyphenol intake, especially of stilbenes and lignans, showed a reduced risk of overall mortality compared to those with lower intakes. These results may be useful to determine optimal polyphenol intake or specific food sources of polyphenols that may reduce the risk of all-cause mortality

    Chance and necessity in the genome evolution of endosymbiotic bacteria of insects

    Full text link
    [EN] An open question in evolutionary biology is how does the selectionÂżdrift balance determine the fates of biological interactions. We searched for signatures of selection and drift in genomes of five endosymbiotic bacterial groups known to evolve under strong genetic drift. Although most genes in endosymbiotic bacteria showed evidence of relaxed purifying selection, many genes in these bacteria exhibited stronger selective constraints than their orthologs in free-living bacterial relatives. Remarkably, most of these highly constrained genes had no role in the hostÂżsymbiont interactions but were involved in either buffering the deleterious consequences of drift or other host-unrelated functions, suggesting that they have either acquired new roles or their role became more central in endosymbiotic bacteria. Experimental evolution of Escherichia coli under strong genetic drift revealed remarkable similarities in the mutational spectrum, genome reduction patterns and gene losses to endosymbiotic bacteria of insects. Interestingly, the transcriptome of the experimentally evolved lines showed a generalized deregulation of the genome that affected genes encoding proteins involved in mutational buffering, regulation and amino acid biosynthesis, patterns identical to those found in endosymbiotic bacteria. Our results indicate that drift has shaped endosymbiotic associations through a change in the functional landscape of bacterial genes and that the host had only a small role in such a shiftThis work was supported by Science Foundation Ireland (12/IP/1637) and grants from the Spanish Ministerio de Economia y Competitividad (MINECO-FEDER; BFU2012-36346 and BFU2015-66073-P) to MAF. DAP and CT were supported by Juan de la Cierva fellowships from MINECO (references: JCI-2011-11089 and JCA-2012-14056, respectively). DAP is supported by funds from the University of Nevada, Reno, NV, USA.Sabater-Muñoz, B.; Toft, C.; Alvarez-Ponce, D.; Fares Riaño, MA. (2017). Chance and necessity in the genome evolution of endosymbiotic bacteria of insects. The ISME Journal. 11(6):1291-1304. https://doi.org/10.1038/ismej.2017.18S12911304116Aguilar-Rodriguez J, Sabater-Munoz B, Montagud-Martinez R, Berlanga V, Alvarez-Ponce D, Wagner A et al. (2016). The molecular chaperone DnaK is a source of mutational robustness. Genome Biol Evol 8: 2979–2991.Alvarez-Ponce D, Sabater-Munoz B, Toft C, Ruiz-Gonzalez MX, Fares MA . (2016). Essentiality is a strong determinant of protein rates of evolution during mutation accumulation experiments in Escherichia coli. Genome Biol Evol 8: 2914–2927.Anders S, Huber W . (2010). Differential expression analysis for sequence count data. Genome Biol 11: R106.Archibald J . (2014) One Plus One Equals One: Symbiosis and the Evolution of Complex Life. Oxford University Press: Oxford, UK.Aussel L, Loiseau L, Hajj Chehade M, Pocachard B, Fontecave M, Pierrel F et al. (2014). ubiJ, a new gene required for aerobic growth and proliferation in macrophage, is involved in coenzyme Q biosynthesis in Escherichia coli and Salmonella enterica serovar Typhimurium. J Bacteriol 196: 70–79.Baumann P, Baumann L, Clark MA . (1996). Levels of Buchnera aphidicola chaperonin groEL during growth of the aphid Schizaphis graminum. Curr Microbiol 32: 7.Benjamini Y, Yekutieli Y . (2005). False discovery rate controlling confidence intervals for selected parameters. J Am Stat Assoc 100: 10.Bennett GM, Moran NA . (2015). Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proc Natl Acad Sci USA 112: 10169–10176.Bermingham J, Rabatel A, Calevro F, Vinuelas J, Febvay G, Charles H et al. (2009). Impact of host developmental age on the transcriptome of the symbiotic bacterium Buchnera aphidicola in the pea aphid (Acyrthosiphon pisum. Appl Environ Microbiol 75: 7294–7297.Bogumil D, Dagan T . (2010). Chaperonin-dependent accelerated substitution rates in prokaryotes. Genome Biol Evol 2: 602–608.Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S et al. (2009). AmiGO: online access to ontology and annotation data. Bioinformatics 25: 288–289.Chen Z, Wang Y, Li Y, Li Y, Fu N, Ye J et al. (2012). Esre: a novel essential non-coding RNA in Escherichia coli. FEBS Lett 586: 1195–1200.Clark JW, Hossain S, Burnside CA, Kambhampati S . (2001). Coevolution between a cockroach and its bacterial endosymbiont: a biogeographical perspective. Proc Biol Sci 268: 393–398.Dale C, Wang B, Moran N, Ochman H . (2003). Loss of DNA recombinational repair enzymes in the initial stages of genome degeneration. Mol Biol Evol 20: 1188–1194.Deatherage DE, Barrick JE . (2014). Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol 1151: 165–188.Douglas AE . (2003). The nutritional physiology of aphids. Adv Insect Physiol 31: 68.Fares MA, Barrio E, Sabater-Munoz B, Moya A . (2002a). The evolution of the heat-shock protein GroEL from Buchnera, the primary endosymbiont of aphids, is governed by positive selection. Mol Biol Evol 19: 1162–1170.Fares MA, Ruiz-Gonzalez MX, Moya A, Elena SF, Barrio E . (2002b). Endosymbiotic bacteria: groEL buffers against deleterious mutations. Nature 417: 398.Gancedo C, Flores CL, Gancedo JM . (2016). The expanding landscape of moonlighting proteins in yeasts. Microbiol Mol Biol Rev 80: 765–777.Gerardo NM, Altincicek B, Anselme C, Atamian H, Barribeau SM, de Vos M et al. (2010). Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biol 11: R21.Gomez-Valero L, Latorre A, Silva FJ . (2004). The evolutionary fate of nonfunctional DNA in the bacterial endosymbiont Buchnera aphidicola. Mol Biol Evol 21: 2172–2181.Gomez-Valero L, Silva FJ, Christophe Simon J, Latorre A . (2007). Genome reduction of the aphid endosymbiont Buchnera aphidicola in a recent evolutionary time scale. Gene 389: 87–95.Gonzalez-Domenech CM, Belda E, Patino-Navarrete R, Moya A, Pereto J, Latorre A . (2012). Metabolic stasis in an ancient symbiosis: genome-scale metabolic networks from two Blattabacterium cuenoti strains, primary endosymbionts of cockroaches. BMC Microbiol 12 (Suppl 1): S5.Hansen AK, Moran NA . (2011). Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. Proc Natl Acad Sci USA 108: 2849–2854.Hansen AK, Moran NA . (2014). The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23: 1473–1496.Henderson B, Fares MA, Lund PA . (2013). Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biol Rev Camb Philos Soc 88: 955–987.Humphreys NJ, Douglas AE . (1997). Partitioning of symbiotic bacteria between generations of an insect: a quantitative study of a Buchnera sp. in the pea aphid (Acyrthosiphon pisum reared at different temperatures. Appl Environ Microbiol 63: 3294–3296.International Aphid Genomics Consortium. (2010). Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8: e1000313.Kadibalban AS, Bogumil D, Landan G, Dagan T . (2016). DnaK-dependent accelerated evolutionary rate in prokaryotes. Genome Biol Evol 8: 1590–1599.Katoh K, Standley DM . (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772–780.Kelkar YD, Ochman H . (2013). Genome reduction promotes increase in protein functional complexity in bacteria. Genetics 193: 303–307.Koga R, Meng XY, Tsuchida T, Fukatsu T . (2012). Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte-embryo interface. Proc Natl Acad Sci USA 109: E1230–E1237.Kuo CH, Moran NA, Ochman H . (2009). The consequences of genetic drift for bacterial genome complexity. Genome Res 19: 1450–1454.Kuo CH, Ochman H . (2009). Deletional bias across the three domains of life. Genome Biol Evol 1: 145–152.Law R, Lewis DH . (1983). Biotic environments and the maintenance of sex-some evidence from mutualistic symbioses. Biol J Linnean Soc 20: 28.Liu XD, Xie L, Wei Y, Zhou X, Jia B, Liu J et al. (2014). Abiotic stress resistance, a novel moonlighting function of ribosomal protein RPL44 in the halophilic fungus Aspergillus glaucus. Appl Environ Microbiol 80: 4294–4300.Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M et al. (2012). RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res 40: W622–W627.Macdonald SJ, Lin GG, Russell CW, Thomas GH, Douglas AE . (2012). The central role of the host cell in symbiotic nitrogen metabolism. Proc Biol Sci 279: 2965–2973.McClure R, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P, Genco CA et al. (2013). Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res 41: e140.McCutcheon JP, Moran NA . (2012). Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10: 13–26.McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Loso T, Douglas AE et al. (2013). Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 110: 3229–3236.Mira A, Ochman H, Moran NA . (2001). Deletional bias and the evolution of bacterial genomes. Trends Genet 17: 589–596.Moran NA . (1996). Accelerated evolution and Muller's rachet in endosymbiotic bacteria. Proc Natl Acad Sci USA 93: 2873–2878.Moran NA, Dunbar HE, Wilcox JL . (2005). Regulation of transcription in a reduced bacterial genome: nutrient-provisioning genes of the obligate symbiont Buchnera aphidicola. J Bacteriol 187: 4229–4237.Moran NA, McCutcheon JP, Nakabachi A . (2008). Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42: 165–190.Moran NA, McLaughlin HJ, Sorek R . (2009). The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science 323: 379–382.Nakabachi A, Ishida K, Hongoh Y, Ohkuma M, Miyagishima SY . (2014). Aphid gene of bacterial origin encodes a protein transported to an obligate endosymbiont. Curr Biol 24: R640–R641.Nilsson AI, Koskiniemi S, Eriksson S, Kugelberg E, Hinton JC, Andersson DI . (2005). Bacterial genome size reduction by experimental evolution. Proc Natl Acad Sci USA 102: 12112–12116.Patino-Navarrete R, Moya A, Latorre A, Pereto J . (2013). Comparative genomics of Blattabacterium cuenoti: the frozen legacy of an ancient endosymbiont genome. Genome Biol Evol 5: 351–361.Pettersson ME, Berg OG . (2007). Muller's ratchet in symbiont populations. Genetica 130: 199–211.Price DR, Feng H, Baker JD, Bavan S, Luetje CW, Wilson AC . (2014). Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts. Proc Natl Acad Sci USA 111: 320–325.Reyes-Prieto M, Vargas-Chavez C, Latorre A, Moya A . (2015). SymbioGenomesDB: a database for the integration and access to knowledge on host-symbiont relationships. Database 2015: bav109 (1–8).Robinson MD, McCarthy DJ, Smyth GK . (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140.Sabater-Muñoz B, Prats-Escriche M, Montagud-Martinez R, Lopez-Cerdan A, Toft C, Aguilar-Rodriguez J et al. (2015). Fitness trade-offs determine the role of the molecular chaperonin groel in buffering mutations. Mol Biol Evol 32: 2681–2693.Schlicker A, Domingues FS, Rahnenfuhrer J, Lengauer T . (2006). A new measure for functional similarity of gene products based on Gene Ontology. BMC Bioinformatics 7: 302.Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H . (2000). Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407: 81–86.Supek F, Bosnjak M, Skunca N, Smuc T . (2011). REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6: e21800.Tamas I, Klasson L, Canback B, Naslund AK, Eriksson AS, Wernegreen JJ et al. (2002). 50 million years of genomic stasis in endosymbiotic bacteria. Science 296: 2376–2379.Toft C, Fares MA . (2008). The evolution of the flagellar assembly pathway in endosymbiotic bacterial genomes. Mol Biol Evol 25: 2069–2076.van Ham RC, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U et al. (2003). Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci USA 100: 581–586.Wernegreen JJ . (2002). Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 3: 850–861.Wernegreen JJ . (2011). Reduced selective constraint in endosymbionts: elevation in radical amino acid replacements occurs genome-wide. PLoS One 6: e28905.Williams TA, Fares MA . (2010). The effect of chaperonin buffering on protein evolution. Genome Biol Evol 2: 609–619.Yang Z . (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591

    Satellite and in situ observations for advancing global Earth surface modelling: a review

    Get PDF
    In this paper, we review the use of satellite-based remote sensing in combination with in situ data to inform Earth surface modelling. This involves verification and optimization methods that can handle both random and systematic errors and result in effective model improvement for both surface monitoring and prediction applications. The reasons for diverse remote sensing data and products include (i) their complementary areal and temporal coverage, (ii) their diverse and covariant information content, and (iii) their ability to complement in situ observations, which are often sparse and only locally representative. To improve our understanding of the complex behavior of the Earth system at the surface and sub-surface, we need large volumes of data from high-resolution modelling and remote sensing, since the Earth surface exhibits a high degree of heterogeneity and discontinuities in space and time. The spatial and temporal variability of the biosphere, hydrosphere, cryosphere and anthroposphere calls for an increased use of Earth observation (EO) data attaining volumes previously considered prohibitive. We review data availability and discuss recent examples where satellite remote sensing is used to infer observable surface quantities directly or indirectly, with particular emphasis on key parameters necessary for weather and climate prediction. Coordinated high-resolution remote-sensing and modelling/assimilation capabilities for the Earth surface are required to support an international application-focused effort

    Dietary α-Linolenic Acid, Marine ω-3 Fatty Acids, and Mortality in a Population With High Fish Consumption: Findings From the PREvenciĂłn con DIeta MEDiterrĂĄnea (PREDIMED) Study

    Get PDF
    Background Epidemiological evidence suggests a cardioprotective role of α‐linolenic acid (ALA), a plant‐derived ω‐3 fatty acid. It is unclear whether ALA is beneficial in a background of high marine ω‐3 fatty acids (long‐chain n‐3 polyunsaturated fatty acids) intake. In persons at high cardiovascular risk from Spain, a country in which fish consumption is customarily high, we investigated whether meeting the International Society for the Study of Fatty Acids and Lipids recommendation for dietary ALA (0.7% of total energy) at baseline was related to all‐cause and cardiovascular disease mortality. We also examined the effect of meeting the society's recommendation for long‐chain n‐3 polyunsaturated fatty acids (≄500 mg/day). Methods and Results We longitudinally evaluated 7202 participants in the PREvenciĂłn con DIeta MEDiterrĂĄnea (PREDIMED) trial. Multivariable‐adjusted Cox regression models were fitted to estimate hazard ratios. ALA intake correlated to walnut consumption (r=0.94). During a 5.9‐y follow‐up, 431 deaths occurred (104 cardiovascular disease, 55 coronary heart disease, 32 sudden cardiac death, 25 stroke). The hazard ratios for meeting ALA recommendation (n=1615, 22.4%) were 0.72 (95% CI 0.56-0.92) for all‐cause mortality and 0.95 (95% CI 0.58-1.57) for fatal cardiovascular disease. The hazard ratios for meeting the recommendation for long‐chain n‐3 polyunsaturated fatty acids (n=5452, 75.7%) were 0.84 (95% CI 0.67-1.05) for all‐cause mortality, 0.61 (95% CI 0.39-0.96) for fatal cardiovascular disease, 0.54 (95% CI 0.29-0.99) for fatal coronary heart disease, and 0.49 (95% CI 0.22-1.01) for sudden cardiac death. The highest reduction in all‐cause mortality occurred in participants meeting both recommendations (hazard ratio 0.63 [95% CI 0.45-0.87]). Conclusions In participants without prior cardiovascular disease and high fish consumption, dietary ALA, supplied mainly by walnuts and olive oil, relates inversely to all‐cause mortality, whereas protection from cardiac mortality is limited to fish‐derived long‐chain n‐3 polyunsaturated fatty acids

    Dietary a-Linolenic acid, Marine x-3 fatty acids, and mortality in a population with high fish consumption: findings from the PREevenciĂłn con DIeta MEDiterrĂĄnea (PREDIMED) study

    Get PDF
    Epidemiological evidence suggests a cardioprotective role of α‐linolenic acid (ALA), a plant‐derived ω‐3 fatty acid. It is unclear whether ALA is beneficial in a background of high marine x-3 fatty acids (long-chain n-3 polyunsaturated fatty acids) intake. In persons at high cardiovascular risk from Spain, a country in which fish consumption is customarily high, we investigated whether meeting the International Society for the Study of Fatty Acids and Lipids recommendation for dietary ALA (0.7% of total energy) at baseline was related to all-cause and cardiovascular disease mortality. We also examined the effect of meeting the society’s recommendation for long-chain n-3 polyunsaturated fatty acids (≄500 mg/day). Methods and Results-—We longitudinally evaluated 7202 participants in the PREvenci on con DIeta MEDiterr anea (PREDIMED) trial. Multivariable-adjusted Cox regressionmodels were fitted to estimate hazard ratios. ALA intake correlated towalnut consumption (r=0.94). During a 5.9-y follow-up, 431 deaths occurred (104 cardiovascular disease, 55 coronary heart disease, 32 sudden cardiac death, 25 stroke). The hazard ratios formeeting ALArecommendation (n=1615, 22.4%) were 0.72 (95% CI 0.56–0.92) for all-causemortality and 0.95 (95% CI 0.58–1.57) for fatal cardiovascular disease. The hazard ratios formeeting the recommendation for long-chain n-3 polyunsaturated fatty acids (n=5452, 75.7%) were 0.84 (95% CI 0.67–1.05) for all-causemortality, 0.61 (95% CI 0.39–0.96) for fatal cardiovascular disease, 0.54 (95% CI 0.29–0.99) for fatal coronary heart disease, and 0.49 (95% CI 0.22–1.01) for sudden cardiac death. The highest reduction in all-cause mortality occurred in participants meeting both recommendations (hazard ratio 0.63 [95% CI 0.45–0.87]). Conclusions-—In participants without prior cardiovascular disease and high fish consumption, dietary ALA, supplied mainly by walnuts and olive oil, relates inversely to all-cause mortality, whereas protection from cardiac mortality is limited to fish-derived long-chain n-3 polyunsaturated fatty acids

    Polyphenol intake and mortality risk: a re-analysis of the PREDIMED trial

    Get PDF
    Background: Polyphenols may lower the risk of cardiovascular disease (CVD) and other chronic diseases due to their antioxidant and anti-inflammatory properties, as well as their beneficial effects on blood pressure, lipids and insulin resistance. However, no previous epidemiological studies have evaluated the relationship between the intake of total polyphenols intake and polyphenol subclasses with overall mortality. Our aim was to evaluate whether polyphenol intake is associated with all-cause mortality in subjects at high cardiovascular risk. Methods: We used data from the PREDIMED study, a 7,447-participant, parallel-group, randomized, multicenter, controlled five-year feeding trial aimed at assessing the effects of the Mediterranean Diet in primary prevention of cardiovascular disease. Polyphenol intake was calculated by matching food consumption data from repeated food frequency questionnaires (FFQ) with the Phenol-Explorer database on the polyphenol content of each reported food. Hazard ratios (HR) and 95% confidence intervals (CI) between polyphenol intake and mortality were estimated using time-dependent Cox proportional hazard models. Results: Over an average of 4.8 years of follow-up, we observed 327 deaths. After multivariate adjustment, we found a 37% relative reduction in all-cause mortality comparing the highest versus the lowest quintiles of total polyphenol intake (hazard ratio (HR) = 0.63; 95% CI 0.41 to 0.97; P for trend = 0.12). Among the polyphenol subclasses, stilbenes and lignans were significantly associated with reduced all-cause mortality (HR =0.48; 95% CI 0.25 to 0.91; P for trend = 0.04 and HR = 0.60; 95% CI 0.37 to 0.97; P for trend = 0.03, respectively), with no significant associations apparent in the rest (flavonoids or phenolic acids). Conclusions: Among high-risk subjects, those who reported a high polyphenol intake, especially of stilbenes and lignans, showed a reduced risk of overall mortality compared to those with lower intakes. These results may be useful to determine optimal polyphenol intake or specific food sources of polyphenols that may reduce the risk of all-cause mortality. Clinical trial registration: ISRCTN35739639

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research
    • 

    corecore