1,760 research outputs found
Longest Common Prefixes with -Errors and Applications
Although real-world text datasets, such as DNA sequences, are far from being
uniformly random, average-case string searching algorithms perform
significantly better than worst-case ones in most applications of interest. In
this paper, we study the problem of computing the longest prefix of each suffix
of a given string of length over a constant-sized alphabet that occurs
elsewhere in the string with -errors. This problem has already been studied
under the Hamming distance model. Our first result is an improvement upon the
state-of-the-art average-case time complexity for non-constant and using
only linear space under the Hamming distance model. Notably, we show that our
technique can be extended to the edit distance model with the same time and
space complexities. Specifically, our algorithms run in time on average using space. We show that our
technique is applicable to several algorithmic problems in computational
biology and elsewhere
Phenotypic and molecular assessment of seven patients with 6p25 deletion syndrome: Relevance to ocular dysgenesis and hearing impairment
BACKGROUND: Thirty-nine patients have been described with deletions involving chromosome 6p25. However, relatively few of these deletions have had molecular characterization. Common phenotypes of 6p25 deletion syndrome patients include hydrocephalus, hearing loss, and ocular, craniofacial, skeletal, cardiac, and renal malformations. Molecular characterization of deletions can identify genes that are responsible for these phenotypes. METHODS: We report the clinical phenotype of seven patients with terminal deletions of chromosome 6p25 and compare them to previously reported patients. Molecular characterization of the deletions was performed using polymorphic marker analysis to determine the extents of the deletions in these seven 6p25 deletion syndrome patients. RESULTS: Our results, and previous data, show that ocular dysgenesis and hearing impairment are the two most highly penetrant phenotypes of the 6p25 deletion syndrome. While deletion of the forkhead box C1 gene (FOXC1) probably underlies the ocular dysgenesis, no gene in this region is known to be involved in hearing impairment. CONCLUSIONS: Ocular dysgenesis and hearing impairment are the two most common phenotypes of 6p25 deletion syndrome. We conclude that a locus for dominant hearing loss is present at 6p25 and that this locus is restricted to a region distal to D6S1617. Molecular characterization of more 6p25 deletion patients will aid in refinement of this locus and the identification of a gene involved in dominant hearing loss
Magnetic Coupling in the Quiet Solar Atmosphere
Three kinds of magnetic couplings in the quiet solar atmosphere are
highlighted and discussed, all fundamentally connected to the Lorentz force.
First the coupling of the convecting and overshooting fluid in the surface
layers of the Sun with the magnetic field. Here, the plasma motion provides the
dominant force, which shapes the magnetic field and drives the surface dynamo.
Progress in the understanding of the horizontal magnetic field is summarized
and discussed. Second, the coupling between acoustic waves and the magnetic
field, in particular the phenomenon of wave conversion and wave refraction. It
is described how measurements of wave travel times in the atmosphere can
provide information about the topography of the wave conversion zone, i.e., the
surface of equal Alfv\'en and sound speed. In quiet regions, this surface
separates a highly dynamic magnetic field with fast moving magnetosonic waves
and shocks around and above it from the more slowly evolving field of high-beta
plasma below it. Third, the magnetic field also couples to the radiation field,
which leads to radiative flux channeling and increased anisotropy in the
radiation field. It is shown how faculae can be understood in terms of this
effect. The article starts with an introduction to the magnetic field of the
quiet Sun in the light of new results from the Hinode space observatory and
with a brief survey of measurements of the turbulent magnetic field with the
help of the Hanle effect.Comment: To appear in "Magnetic Coupling between the Interior and the
Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and
Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200
f(R) theories
Over the past decade, f(R) theories have been extensively studied as one of
the simplest modifications to General Relativity. In this article we review
various applications of f(R) theories to cosmology and gravity - such as
inflation, dark energy, local gravity constraints, cosmological perturbations,
and spherically symmetric solutions in weak and strong gravitational
backgrounds. We present a number of ways to distinguish those theories from
General Relativity observationally and experimentally. We also discuss the
extension to other modified gravity theories such as Brans-Dicke theory and
Gauss-Bonnet gravity, and address models that can satisfy both cosmological and
local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in
Relativity, Published version, Comments are welcom
Including Total EGFR Staining in Scoring Improves EGFR Mutations Detection by Mutation-Specific Antibodies and EGFR TKIs Response Prediction
Epidermal growth factor receptor (EGFR) is a novel target for therapy in subsets of non-small cell lung cancer, especially adenocarcinoma. Tumors with EGFR mutations showed good response to EGFR tyrosine kinase inhibitors (TKIs). We aimed to identify the discriminating capacity of immunohistochemical (IHC) scoring to detect L858R and E746-A750 deletion mutation in lung adenocarcinoma patients and predict EGFR TKIs response. Patients with surgically resected lung adenocarcinoma were enrolled. EGFR mutation status was genotyped by PCR and direct sequencing. Mutation-specific antibodies for L858R and E746-A750 deletion were used for IHC staining. Receiver operating characteristic (ROC) curves were used to determine the capacity of IHC, including intensity and/or quickscore (Q score), in differentiating L858R and E746-A750 deletion. We enrolled 143 patients during September 2000 to May 2009. Logistic-regression-model-based scoring containing both L858R Q score and total EGFR expression Q score was able to obtain a maximal area under the curve (AUC: 0.891) to differentiate the patients with L858R. Predictive model based on IHC Q score of E746-A750 deletion and IHC intensity of total EGFR expression reached an AUC of 0.969. The predictive model of L858R had a significantly higher AUC than L858R intensity only (pâ=â0.036). Of the six patients harboring complex EGFR mutations with classical mutation patterns, five had positive IHC staining. For EGFR TKI treated cancer recurrence patients, those with positive mutation-specific antibody IHC staining had better EGFR TKI response (pâ=â0.008) and longer progression-free survival (pâ=â0.012) than those without. In conclusion, total EGFR expression should be included in the IHC interpretation of L858R. After adjusting for total EGFR expression, the scoring method decreased the false positive rate and increased diagnostic power. According to the scoring method, the IHC method is useful to predict the clinical outcome and refine personalized therapy
Measurement of B(t->Wb)/B(t->Wq) at the Collider Detector at Fermilab
We present a measurement of the ratio of top-quark branching fractions R= B(t
-> Wb)/B(t -> Wq), where q can be a b, s or a d quark, using lepton-plus-jets
and dilepton data sets with integrated luminosity of ~162 pb^{-1} collected
with the Collider Detector at Fermilab during Run II of the Tevatron. The
measurement is derived from the relative numbers of t-tbar events with
different multiplicity of identified secondary vertices. We set a lower limit
of R > 0.61 at 95% confidence level.Comment: 7 pages, 2 figures, published in Physical Review Letters; changes
made to be consistent with published versio
Search for ZZ and ZW Production in ppbar Collisions at sqrt(s) = 1.96 TeV
We present a search for ZZ and ZW vector boson pair production in ppbar
collisions at sqrt(s) = 1.96 TeV using the leptonic decay channels ZZ --> ll nu
nu, ZZ --> l l l' l' and ZW --> l l l' nu. In a data sample corresponding to an
integrated luminosity of 194 pb-1 collected with the Collider Detector at
Fermilab, 3 candidate events are found with an expected background of 1.0 +/-
0.2 events. We set a 95% confidence level upper limit of 15.2 pb on the cross
section for ZZ plus ZW production, compared to the standard model prediction of
5.0 +/- 0.4 pb.Comment: 7 pages, 2 figures. This version is accepted for publication by Phys.
Rev. D Rapid Communication
Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of âs = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTâ„20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60â€pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2â€{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
Measurement of the Cross Section for Prompt Diphoton Production in p-pbar Collisions at sqrt(s) = 1.96 TeV
We report a measurement of the rate of prompt diphoton production in
collisions at using a data sample of 207
pb collected with the upgraded Collider Detector at Fermilab (CDF II).
The background from non-prompt sources is determined using a statistical method
based on differences in the electromagnetic showers. The cross section is
measured as a function of the diphoton mass, the transverse momentum of the
diphoton system, and the azimuthal angle between the two photons and is found
to be consistent with perturbative QCD predictions.Comment: 7 pages, 3 figures,revtex4. Version accepted by PRL, but with cross
section tables i
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- âŠ