733 research outputs found

    Performance measures of the specialty referral process: a systematic review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Performance of specialty referrals is coming under scrutiny, but a lack of identifiable measures impedes measurement efforts. The objective of this study was to systematically review the literature to identify published measures that assess specialty referrals.</p> <p>Methods</p> <p>We performed a systematic review of the literature for measures of specialty referral. Searches were made of MEDLINE and HealthSTAR databases, references of eligible papers, and citations provided by content experts. Measures were eligible if they were published from January 1973 to June 2009, reported on validity and/or reliability of the measure, and were applicable to Organization for Economic Cooperation and Development healthcare systems. We classified measures according to a conceptual framework, which underwent content validation with an expert panel.</p> <p>Results</p> <p>We identified 2,964 potentially eligible papers. After abstract and full-text review, we selected 214 papers containing 244 measures. Most measures were applied in adults (57%), assessed structural elements of the referral process (60%), and collected data via survey (62%). Measures were classified into non-mutually exclusive domains: need for specialty care (N = 14), referral initiation (N = 73), entry into specialty care (N = 53), coordination (N = 60), referral type (N = 3), clinical tasks (N = 19), resource use (N = 13), quality (N = 57), and outcomes (N = 9).</p> <p>Conclusions</p> <p>Published measures are available to assess the specialty referral process, although some domains are limited. Because many of these measures have been not been extensively validated in general populations, assess limited aspects of the referral process, and require new data collection, their applicability and preference in assessment of the specialty referral process is needed.</p

    Management of singlet and triplet excitons for efficient white organic light-emitting devices

    Full text link
    Lighting accounts for approximately 22 per cent of the electricity consumed in buildings in the United States, with 40 per cent of that amount consumed by inefficient (similar to 15 lm W-1) incandescent lamps(1,2). This has generated increased interest in the use of white electroluminescent organic light-emitting devices, owing to their potential for significantly improved efficiency over incandescent sources combined with low-cost, high-throughput manufacturability. The most impressive characteristics of such devices reported to date have been achieved in all-phosphor-doped devices, which have the potential for 100 per cent internal quantum efficiency(2): the phosphorescent molecules harness the triplet excitons that constitute three-quarters of the bound electron-hole pairs that form during charge injection, and which (unlike the remaining singlet excitons) would otherwise recombine non-radiatively. Here we introduce a different device concept that exploits a blue fluorescent molecule in exchange for a phosphorescent dopant, in combination with green and red phosphor dopants, to yield high power efficiency and stable colour balance, while maintaining the potential for unity internal quantum efficiency. Two distinct modes of energy transfer within this device serve to channel nearly all of the triplet energy to the phosphorescent dopants, retaining the singlet energy exclusively on the blue fluorescent dopant. Additionally, eliminating the exchange energy loss to the blue fluorophore allows for roughly 20 per cent increased power efficiency compared to a fully phosphorescent device. Our device challenges incandescent sources by exhibiting total external quantum and power efficiencies that peak at 18.7 +/- 0.5 per cent and 37.6 +/- 0.6 lm W-1, respectively, decreasing to 18.4 +/- 0.5 per cent and 23.8 +/- 0.5 lm W-1 at a high luminance of 500 cd m(-2).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62889/1/nature04645.pd

    Best practices for measuring emerging light-emitting diode technologies

    Get PDF
    The arrival of light-emitting diodes based on new materials is posing challenges for the characterization and comparison of devices in a trusted and consistent manner. Here we provide some advice and guidelines that we hope will benefit the community

    Comparison of the prognostic value of selected markers of the systemic inflammatory response in patients with colorectal cancer

    Get PDF
    There is increasing evidence that the presence of a systemic inflammatory response plays an important role in predicting survival in patients with colorectal cancer. However, it is not clear what components of the systemic inflammatory response best predict survival. The aim of the present study was to compare the prognostic value of an inflammation-based prognostic score (modified Glasgow Prognostic Score (Mgps) 0=C-reactive protein <10 mg l−1, 1=C-reactive protein >10 mg l−1, and 2=C-reactive protein >10 mg l−1 and albumin<35 g l−1) with that of components of the white cell count (neutrophils, lymphocytes, monocytes and platelets using standard thresholds) in patients with colorectal cancer. Two patient groups were studied: 149 patients who underwent potentially curative resection for colorectal cancer and 84 patients who had synchronous unresectable liver metastases. In those patients who underwent potentially curative resection the minimum follow-up was 36 months and 20 patients died of their cancer. On multivariate survival analysis only TNM stage (HR 3.75, 95% CI 1.54–9.17, P=0.004), monocyte count (HR 3.79, 95% CI 1.29–11.12, P=0.015) and mGPS (HR 2.21, 95% CI 1.11–4.41, P=0.024) were independently associated with cancer-specific survival. In patients with synchronous unresectable liver metastases the minimum follow-up was 6 months and 71 patients died of their cancer. On multivariate survival analysis only single liver metastasis >5 cm (HR 1.78, 95% CI 0.99–3.21, P=0.054), extra-hepatic disease (HR 2.09, 95% CI 1.05–4.17, P=0.036), chemotherapy treatment (HR 2.40, 95% CI 1.82–3.17, P<0.001) and mGPS (HR 1.44, 95% CI 1.01–2.04, P=0.043) were independently associated with cancer-specific survival. In summary, markers of the systemic inflammatory response are associated with poor outcome in patients with either primary operable or synchronous unresectable colorectal cancer. An acute-phase protein-based prognostic score, the mGPS, appears to be a superior predictor of survival compared with the cellular components of the systemic inflammatory response

    Assessment of endometrial and ovarian characteristics using three dimensional power Doppler ultrasound to predict response in frozen embryo transfer cycles

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To evaluate whether endometrial or ovarian parameters as measured using 3D power Doppler ultrasound would predict the outcome in frozen embryo transfer (FET) cycles.</p> <p>Methods</p> <p>Thirty women with no known gynecological pathology undergoing FET were recruited. The FET was carried out in the natural menstrual cycle 3-4 days after the first positive LH test result. Blood samples for hormonal analysis were collected, and three-dimensional (3D) ultrasonographic examination was performed on the day of the FET and repeated with analysis of the total hCG one week later.</p> <p>Results</p> <p>The demographic, clinical, and embryological characteristics were similar between the pregnant (15/30) and nonpregnant groups (15/30). There were no differences between the groups in endometrial/subendometrial thickness, volume, or vascularization index (VI). The endometrial triple-line pattern was more often present in the pregnant group on the day of the FET (93.3% vs. 40.0%, 95% CI 25.5-81.2%). No differences in the ovaries were observed on the day of the FET. At the second visit, the triple-line pattern was still more often present in those patients who had conceived (91.7% vs. 42.9%, 95% CI 18.5-79.1%), and their corpus luteum was more active as judged by the rise in 17-hydroxyprogesterone and estradiol levels. No differences were observed in the dominant ovarian vasculature.</p> <p>Conclusions</p> <p>According to our results, measurement of power Doppler indices using 3D ultrasound on the day of the FET does not provide any additional information concerning the outcome of the cycle. The existence of the triple-line pattern on the day of the FET seems to be a prognostic sign of a prosperous outcome after FET. The dominant ovary in the pregnant group seems to be already activated one week after the FET.</p

    Efficient Organic Photovoltaics Utilizing Nanoscale Heterojunctions in Sequentially Deposited Polymer/fullerene Bilayer

    Get PDF
    A highly efficient sequentially deposited bilayer (SD-bilayer) of polymer/fullerene organic photovoltaic (OPV) device is developed via the solution process. Herein, we resolve two essential problems regarding the construction of an efficient SD-bilayer OPV. First, the solution process fabrication of the SD-bilayer is resolved by incorporating an ordering agent (OA) to the polymer solution, which improves the ordering of the polymer chain and prevents the bottom-layer from dissolving into the top-layer solution. Second, a non-planar heterojunction with a large surface area is formed by the incorporation of a heterojunction agent (HA) to the top-layer solution. Poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole- 4,7-diyl-2,5-thiophenediyl] (PCDTBT) is used for the bottom-layer and phenyl-C71-butyric-acid-methyl ester (PC70BM) is used for the top-layer. The SD-bilayer OPV produced utilizing both an OA and HA exhibits a power conversion efficiency (PCE) of 7.12% with a high internal quantum efficiency (IQE). We believe our bilayer system affords a new way of forming OPVs distinct from bulk heterojunction (BHJ) systems and offers a chance to reconsider the polymers that have thus far shown unsatisfactory performance in BHJ systemsope

    The status and challenge of global fire modelling

    Get PDF
    This is the final version of the article. Available from European Geosciences Union / Copernicus Publications via the DOI in this record.The discussion paper version of this article was published in Biogeosciences Discussions on 25 January 2016 and is in ORE at http://hdl.handle.net/10871/34451Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, using either well-founded empirical relationships or process-based models with good predictive skill. While a large variety of models exist today, it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project (FireMIP), an international initiative to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we review how fires have been represented in fire-enabled dynamic global vegetation models (DGVMs) and give an overview of the current state of the art in fire-regime modelling. We indicate which challenges still remain in global fire modelling and stress the need for a comprehensive model evaluation and outline what lessons may be learned from FireMIP.Stijn Hantson and Almut Arneth acknowledge support by the EU FP7 projects BACCHUS (grant agreement no. 603445) and LUC4C (grant agreement no. 603542). This work was supported, in part, by the German Federal Ministry of Education and Research (BMBF), through the Helmholtz Association and its research programme ATMO, and the HGF Impulse and Networking fund. The MC-FIRE model development was supported by the global change research programmes of the Biological Resources Division of the US Geological Survey (CA 12681901,112-), the US Department of Energy (LWT-6212306509), the US Forest Service (PNW96–5I0 9 -2-CA), and funds from the Joint Fire Science Program. I. Colin Prentice is supported by the AXA Research Fund under the Chair Programme in Biosphere and Climate Impacts, part of the Imperial College initiative Grand Challenges in Ecosystems and the Environment. Fang Li was funded by the National Natural Science Foundation (grant agreement no. 41475099 and no. 2010CB951801). Jed O. Kaplan was supported by the European Research Council (COEVOLVE 313797). Sam S. Rabin was funded by the National Science Foundation Graduate Research Fellowship, as well as by the Carbon Mitigation Initiative. Allan Spessa acknowledges funding support provided by the Open University Research Investment Fellowship scheme. FireMIP is a non-funded community initiative and participation is open to all. For more information, contact Stijn Hantson ([email protected])
    corecore