1,694 research outputs found

    An FPGA-based track finder for the L1 trigger of the CMS experiment at the high luminosity LHC

    Get PDF
    A new tracking system is under development for operation in the CMS experiment at the High Luminosity LHC. It includes an outer tracker which will construct stubs, built by correlating clusters in two closely spaced sensor layers for the rejection of hits from low transverse momentum tracks, and transmit them off-detector at 40 MHz. If tracker data is to contribute to keeping the Level-1 trigger rate at around 750 kHz under increased luminosity, a crucial component of the upgrade will be the ability to identify tracks with transverse momentum above 3 GeV/c by building tracks out of stubs. A concept for an FPGA-based track finder using a fully time-multiplexed architecture is presented, where track candidates are identified using a projective binning algorithm based on the Hough Transform. A hardware system based on the MP7 MicroTCA processing card has been assembled, demonstrating a realistic slice of the track finder in order to help gauge the performance and requirements for a full system. This paper outlines the system architecture and algorithms employed, highlighting some of the first results from the hardware demonstrator and discusses the prospects and performance of the completed track finder

    cPath: open source software for collecting, storing, and querying biological pathways

    Get PDF
    BACKGROUND: Biological pathways, including metabolic pathways, protein interaction networks, signal transduction pathways, and gene regulatory networks, are currently represented in over 220 diverse databases. These data are crucial for the study of specific biological processes, including human diseases. Standard exchange formats for pathway information, such as BioPAX, CellML, SBML and PSI-MI, enable convenient collection of this data for biological research, but mechanisms for common storage and communication are required. RESULTS: We have developed cPath, an open source database and web application for collecting, storing, and querying biological pathway data. cPath makes it easy to aggregate custom pathway data sets available in standard exchange formats from multiple databases, present pathway data to biologists via a customizable web interface, and export pathway data via a web service to third-party software, such as Cytoscape, for visualization and analysis. cPath is software only, and does not include new pathway information. Key features include: a built-in identifier mapping service for linking identical interactors and linking to external resources; built-in support for PSI-MI and BioPAX standard pathway exchange formats; a web service interface for searching and retrieving pathway data sets; and thorough documentation. The cPath software is freely available under the LGPL open source license for academic and commercial use. CONCLUSION: cPath is a robust, scalable, modular, professional-grade software platform for collecting, storing, and querying biological pathways. It can serve as the core data handling component in information systems for pathway visualization, analysis and modeling

    Emulation of a prototype FPGA track finder for the CMS Phase-2 upgrade with the CIDAF emulation framework

    Get PDF
    The CMS collaboration is preparing a major upgrade of its detector, so it can operate during the high luminosity run of the LHC from 2026. The upgraded tracker electronics will reconstruct the trajectories of charged particles within a latency of a few microseconds, so that they can be used by the level-1 trigger. An emulation framework, CIDAF, has been developed to provide a reference for a proposed FPGA-based implementation of this track finder, which employs a Time-Multiplexed (TM) technique for data processing.The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Unions Seventh Framework Programme FP7/2007- 2013/ under REA grant agreement n [317446] INFIERI “Intelligent Fast Interconnected and Efficient Devices for Frontier Exploitation in Research and Industry”. This work was supported in part by the the UK Science and Technology Facilities Council, we gratefully acknowledge their support

    Three new chondrosarcoma cell lines: one grade III conventional central chondrosarcoma and two dedifferentiated chondrosarcomas of bone

    Get PDF
    BackgroundChondrosarcoma is the second most common primary sarcoma of bone. High-grade conventional chondrosarcoma and dedifferentiated chondrosarcoma have a poor outcome. In pre-clinical research aiming at the identification of novel treatment targets, the need for representative cell lines and model systems is high, but availability is scarce.MethodsWe developed and characterized three cell lines, derived from conventional grade III chondrosarcoma (L835), and dedifferentiated chondrosarcoma (L2975 and L3252) of bone. Proliferation and migration were studied and we used COBRA-FISH and array-CGH for karyotyping and genotyping. Immunohistochemistry for p16 and p53 was performed as well as TP53 and IDH mutation analysis. Cells were injected into nude mice to establish their tumorigenic potential.ResultsWe show that the three cell lines have distinct migrative properties, L2975 had the highest migration rate and showed tumorigenic potential in mice. All cell lines showed chromosomal rearrangements with complex karyotypes and genotypic aberrations were conserved throughout late passaging of the cell lines. All cell lines showed loss of CDKN2A, while TP53 was wild type for exons 5–8. L835 has an IDH1 R132C mutation, L2975 an IDH2 R172W mutation and L3252 is IDH wild type.ConclusionsBased on the stable culturing properties of these cell lines and their genotypic profile resembling the original tumors, these cell lines should provide useful functional models to further characterize chondrosarcoma and to evaluate new treatment strategies

    Impact of water management on methane emission dynamics in Sri Lankan paddy ecosystems

    Get PDF
    Paddy ecosystems constitute a dominant source of greenhouse gases, particularly of methane (CH₄), due to the continuous flooding (CF) practiced under conventional paddy cultivation. A new management method, namely alternative wetting and draining (AWD) (i.e., flooding whenever surface water levels decline to 15 cm below the soil surface), is an emerging practice developed to mitigate CH₄ emissions while providing an optimal solution for freshwater scarcity. Despite extensive paddy cultivation in Sri Lanka, no systematic research study has been conducted to investigate CH₄ emissions under different water management practices. Thus, field experiments were conducted in Sri Lanka to investigate the feedback of controlled water management on seasonal and diel variation of CH₄ emission, water consumption, and crop productivity. Adopting the same rice variety, two water management methods, continuous flooding (CF) and alternative wetting and draining (AWD), were compared with plants (W/P) and without plants (N/P) present. The emission of CH₄ was measured using the static closed chamber method. The results show a 32% reduction in cumulative CH₄ emission, on average, under AWD when compared to CF. The yield under the AWD was slightly higher than that of CF. Although it was not statistically significant (p > 0.05) there was not any reduction in yield in AWD than in CF. The total water saving under AWD ranged between 27–35% when compared to CF. Thus, the results support (without considering the effect of nitrous oxide) AWD as a promising method for mitigating CH₄ emissions while preserving freshwater and maintaining grain yield in paddy systems

    The Duration of Antigen-Stimulation Significantly Alters the Diversity of Multifunctional CD4 T Cells Measured by Intracellular Cytokine Staining

    Get PDF
    The assessment of antigen-specific T cell responses by intracellular cytokine staining (ICS) has become a routine technique in studies of vaccination and immunity. Here, we highlight how the duration of in vitro antigen pre-stimulation, combined with the cytokine accumulation period, are critical parameters of these methods. The effect of varying these parameters upon the diversity and frequency of multifunctional CD4 T cell subsets has been investigated using a murine model of TB vaccination and in cattle naturally infected with Mycobacterium bovis. We demonstrate a substantial influence of the duration of the antigen pre-stimulation period on the repertoire of the antigen-specific CD4 T cell responses. Increasing pre-stimulation from 2 to 6 hours amplified the diversity of the seven potential multifunctional CD4 T cell subsets that secreted any combination of IFN-γ, IL-2 and TNF-α. However, increasing pre-stimulation from 6 to 16 hours markedly altered the multifunctional CD4 T cell repertoire to a dominant IFN-γ+ only response. This was observed in both murine and cattle models

    Brain activity underlying negative self- and other-perception in adolescents: The role of attachment-derived self-representations

    Get PDF
    One of teenagers' key developmental tasks is to engage in new and meaningful relationships with peers and adults outside the family context. Attachment-derived expectations about the self and others in terms of internal attachment working models have the potential to shape such social reorientation processes critically and thereby influence adolescents' social-emotional development and social integration. Because the neural underpinnings of this developmental task remain largely unknown, we sought to investigate them by functional magnetic resonance imaging. We asked n = 44 adolescents (ages 12.01-18.84 years) to evaluate positive and negative adjectives regarding either themselves or a close other during an adapted version of the well-established self-other trait-evaluation task. As measures of attachment, we obtained scores reflecting participants' positive versus negative attachment-derived self- and other-models by means of the Relationship Questionnaire. We controlled for possible confounding factors by also obtaining scores reflecting internalizing/externalizing problems, schizotypy, and borderline symptomatology. Our results revealed that participants with a more negative attachment-derived self-model showed increased brain activity during positive and negative adjective evaluation regarding the self, but decreased brain activity during negative adjective evaluation regarding a close other, in bilateral amygdala/parahippocampus, bilateral anterior temporal pole/anterior superior temporal gyrus, and left dorsolateral prefrontal cortex. These findings suggest that a low positivity of the self-concept characteristic for the attachment anxiety dimension may influence neural information processing, but in opposite directions when it comes to self- versus (close) other-representations. We discuss our results in the framework of attachment theory and regarding their implications especially for adolescent social-emotional development and social integration

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    A search for neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is based on a sample of proton-proton collisions at a centre-of-mass energy of 7TeV recorded with the ATLAS detector at the Large Hadron Collider. The data were recorded in 2011 and correspond to an integrated luminosity of 4.7 fb-1 to 4.8 fb-1. Higgs boson decays into oppositely-charged muon or τ lepton pairs are considered for final states requiring either the presence or absence of b-jets. No statistically significant excess over the expected background is observed and exclusion limits at the 95% confidence level are derived. The exclusion limits are for the production cross-section of a generic neutral Higgs boson, φ, as a function of the Higgs boson mass and for h/A/H production in the MSSM as a function of the parameters mA and tan β in the mhmax scenario for mA in the range of 90GeV to 500 GeV. Copyright CERN

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
    corecore