20 research outputs found
RNA Interference of Four Genes in Adult Bactrocera dorsalis by Feeding Their dsRNAs
BACKGROUND: RNA interference (RNAi) is a powerful method to inhibit gene expression in a sequence specific manner. Recently silencing the target gene through feeding has been successfully carried out in many insect species. METHODOLOGY/PRINCIPAL FINDINGS: Escherichia coli strain HT115 was genetically engineered to express dsRNA targeting genes that encode ribosomal protein Rpl19, V type ATPase D subunit, the fatty acid elongase Noa and a small GTPase Rab11. qRT-PCR showed that mRNA level of four target genes was reduced compared to ds-egfp control by feeding either engineered bacteria or dsRNAs. The maximum down-regulation of each gene varied from 35% to 100%. Tissue specific examination indicated that RNAi could be observed not only in midgut but also in other tissues like the ovary, nervous system and fat body. Silencing of rab11 through ingestion of dsRNA killed 20% of adult flies. Egg production was affected through feeding ds-noa and ds-rab11 compared to ds-egfp group. Adult flies were continuously fed with dsRNA and bacteria expressing dsRNA for 14 days and up-regulations of target genes were observed during this process. The transcripts of noa showed up-regulation compared to ds-egfp control group in four tissues on day 7 after continuous feeding either dsRNA or engineered bacteria. The maximum over-expression is 21 times compared to ds-egfp control group. Up-regulation of rab11 mRNA level could be observed in testes on day 7 after continuous bacteria treatment and in midgut on day 2 after ds-rab11 treatment. This phenomenon could also be observed in rpl19 groups. CONCLUSIONS: Our results suggested that it is feasible to silence genes by feeding dsRNA and bacteria expressing dsRNA in Bactrocera dorsalis. Additionally the over-expression of the target gene after continuously feeding dsRNA or bacteria was observed
Down-Regulation of Honey Bee IRS Gene Biases Behavior toward Food Rich in Protein
Food choice and eating behavior affect health and longevity. Large-scale research efforts aim to understand the molecular and social/behavioral mechanisms of energy homeostasis, body weight, and food intake. Honey bees (Apis mellifera) could provide a model for these studies since individuals vary in food-related behavior and social factors can be controlled. Here, we examine a potential role of peripheral insulin receptor substrate (IRS) expression in honey bee foraging behavior. IRS is central to cellular nutrient sensing through transduction of insulin/insulin-like signals (IIS). By reducing peripheral IRS gene expression and IRS protein amount with the use of RNA interference (RNAi), we demonstrate that IRS influences foraging choice in two standard strains selected for different food-hoarding behavior. Compared with controls, IRS knockdowns bias their foraging effort toward protein (pollen) rather than toward carbohydrate (nectar) sources. Through control experiments, we establish that IRS does not influence the bees' sucrose sensory response, a modality that is generally associated with food-related behavior and specifically correlated with the foraging preference of honey bees. These results reveal a new affector pathway of honey bee social foraging, and suggest that IRS expressed in peripheral tissue can modulate an insect's foraging choice between protein and carbohydrate sources
Genome Sequence of the Pea Aphid Acyrthosiphon pisum
Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems
EVALUATION OF METHODS IN DETECTING VANCOMYCIN MIC AMONG MRSA ISOLATES AND THE CHANGES IN ACCURACY RELATED TO DIFFERENT MIC VALUES
INTRODUCTION: Methicillin-Resistant Staphylococcus aureus (MRSA) presenting reduced susceptibility to vancomycin has been associated to therapeutic failure. Some methods used by clinical laboratories may not be sufficiently accurate to detect this phenotype, compromising results and the outcome of the patient. OBJECTIVES: To evaluate the performance of methods in the detection of vancomycin MIC values among clinical isolates of MRSA. MATERIAL AND METHODS: The Vancomycin Minimal Inhibitory Concentration was determined for 75 MRSA isolates from inpatients of Mãe de Deus Hospital, Porto Alegre, Brazil. The broth microdilution (BM) was used as the gold-standard technique, as well as the following methods: E-test® strips (BioMérieux), M.I.C.E® strips (Oxoid), PROBAC® commercial panel and the automated system MicroScan® (Siemens). Besides, the agar screening test was carried out with 3 µg/mL of vancomycin. RESULTS: All isolates presented MIC ≤ 2 µg/mL for BM. E-test® had higher concordance (40%) in terms of global agreement with the gold standard, and there was not statistical difference among E-test® and broth microdilution results. PROBAC® panels presented MICs, in general, lower than the gold-standard panels (58.66% major errors), while M.I.C.E.® MICs were higher (67.99% minor errors). CONCLUSIONS: For the population of MRSA in question, E-test® presented the best performance, although with a heterogeneous accuracy, depending on MIC values
Genomics of Phenotypic plastity in Aphids
International audienceThis chapter aims at explaining how the understanding of a complex adaptive trait (phenotypic plasticity) of insect pests (aphids) can gain from genomics approaches. Aphids adapt their capacity of dispersal to escape natural enemies or poor plant quality, as well as they adapt capacity to produce eggs or viviparous larvae upon the seasons. Genomes of aphids are now available, and post-genomics strategies (including quantitative genetics) allow the community to identify key regulatory gene circuits that govern the phenotypic adaptation of these insects to their changing environment