816 research outputs found

    Tecnologia para aproveitamento de resíduos da agroindústria sucroalcooleira como biofertilizante organomineral granulad

    Get PDF
    Aiming to evaluate the use of sugarcane industry waste such as byproducts from vinasse concentration process, it was assessed the organomineral fertilizer BIOFOM (concentrated vinasse, filter cake, boiler ash, soot from chimneys and supplemented with mineral fertilizers). The study included characterization and agronomic potential analysis of a test plant (corn), by noting the differences between mineral fertilizers and BIOFOM fertilization until 45 days after sowing. The technology traditionally used to produce BIOFOM was based on vinasse evaporation with high heat transfer coefficients. It was observed that the technology, which can be formulated according to the needs of any crop, could be used in many cases as mineral fertilizer. Therefore, the use of this organomineral fertilizer reduces waste generation of sugarcane industry351Com o objetivo de avaliar o uso de resíduos da agroindústria sucroalcooleira como vantagens do processo de concentração da vinhaça, utilizou-se o BIOFOM (biofertilizante organomineral formulado com vinhaça concentrada, torta de filtro, cinzas de caldeira e fuligem das chaminés, e complementado com fertilizantes minerais). O presente estudo contemplou a caracterização e a análise do potencial agronômico envolvendo uma planta-teste (milho), observando as diferenças entre os tratamentos (adubação com fertilizante mineral versus adubação com BIOFOM), até 45 dias após a semeadura. A tecnologia (tradicionalmente usada para a produção do BIOFOM) utilizada para concentrar a vinhaça baseou-se na evaporação do resíduo com elevados coeficientes de troca térmica. Observou-se que o BIOFOM, que pode ser formulado de acordo com as necessidades de qualquer cultura, pode substituir, parcial ou totalmente, a utilização do fertilizante mineral. O produto reduz a geração de resíduos da agroindústria sucroalcooleir

    Investigation of two Fermi-LAT gamma-ray blazars coincident with high-energy neutrinos detected by IceCube

    Get PDF
    After the identification of the gamma-ray blazar TXS 0506+056 as the first compelling IceCube neutrino source candidate, we perform a systematic analysis of all high-energy neutrino events satisfying the IceCube realtime trigger criteria. We find one additional known gamma-ray source, the blazar GB6 J1040+0617, in spatial coincidence with a neutrino in this sample. The chance probability of this coincidence is 30% after trial correction. For the first time, we present a systematic study of the gamma-ray flux, spectral and optical variability, and multi-wavelength behavior of GB6 J1040+0617 and compare it to TXS 0506+056. We find that TXS 0506+056 shows strong flux variability in the Fermi-LAT gamma-ray band, being in an active state around the arrival of IceCube-170922A, but in a low state during the archival IceCube neutrino flare in 2014/15. In both cases the spectral shape is statistically compatible (2σ\leq 2\sigma) with the average spectrum showing no indication of a significant relative increase of a high-energy component. While the association of GB6 J1040+0617 with the neutrino is consistent with background expectations, the source appears to be a plausible neutrino source candidate based on its energetics and multi-wavelength features, namely a bright optical flare and modestly increased gamma-ray activity. Finding one or two neutrinos originating from gamma-ray blazars in the given sample of high-energy neutrinos is consistent with previously derived limits of neutrino emission from gamma-ray blazars, indicating the sources of the majority of cosmic high-energy neutrinos remain unknown.Comment: 22 pages, 11 figures, 2 Table

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    All-flavor constraints on nonstandard neutrino interactions and generalized matter potential with three years of IceCube DeepCore data

    Get PDF
    We report constraints on nonstandard neutrino interactions (NSI) from the observation of atmospheric neutrinos with IceCube, limiting all individual coupling strengths from a single dataset. Furthermore, IceCube is the first experiment to constrain flavor-violating and nonuniversal couplings simultaneously. Hypothetical NSI are generically expected to arise due to the exchange of a new heavy mediator particle. Neutrinos propagating in matter scatter off fermions in the forward direction with negligible momentum transfer. Hence the study of the matter effect on neutrinos propagating in the Earth is sensitive to NSI independently of the energy scale of new physics. We present constraints on NSI obtained with an all-flavor event sample of atmospheric neutrinos based on three years of IceCube DeepCore data. The analysis uses neutrinos arriving from all directions, with reconstructed energies between 5.6 GeV and 100 GeV. We report constraints on the individual NSI coupling strengths considered singly, allowing for complex phases in the case of flavor-violating couplings. This demonstrates that IceCube is sensitive to the full NSI flavor structure at a level competitive with limits from the global analysis of all other experiments. In addition, we investigate a generalized matter potential, whose overall scale and flavor structure are also constrained

    Multimessenger Gamma-Ray and Neutrino Coincidence Alerts using HAWC and IceCube sub-threshold Data

    Full text link
    The High Altitude Water Cherenkov (HAWC) and IceCube observatories, through the Astrophysical Multimessenger Observatory Network (AMON) framework, have developed a multimessenger joint search for extragalactic astrophysical sources. This analysis looks for sources that emit both cosmic neutrinos and gamma rays that are produced in photo-hadronic or hadronic interactions. The AMON system is running continuously, receiving sub-threshold data (i.e. data that is not suited on its own to do astrophysical searches) from HAWC and IceCube, and combining them in real-time. We present here the analysis algorithm, as well as results from archival data collected between June 2015 and August 2018, with a total live-time of 3.0 years. During this period we found two coincident events that have a false alarm rate (FAR) of <1<1 coincidence per year, consistent with the background expectations. The real-time implementation of the analysis in the AMON system began on November 20th, 2019, and issues alerts to the community through the Gamma-ray Coordinates Network with a FAR threshold of <4<4 coincidences per year.Comment: 14 pages, 5 figures, 3 table

    Search for Quantum Gravity Using Astrophysical Neutrino Flavour with IceCube

    Full text link
    Along their long propagation from production to detection, neutrino states undergo quantum interference which converts their types, or flavours. High-energy astrophysical neutrinos, first observed by the IceCube Neutrino Observatory, are known to propagate unperturbed over a billion light years in vacuum. These neutrinos act as the largest quantum interferometer and are sensitive to the smallest effects in vacuum due to new physics. Quantum gravity (QG) aims to describe gravity in a quantum mechanical framework, unifying matter, forces and space-time. QG effects are expected to appear at the ultra-high-energy scale known as the Planck energy, EP1.22×1019E_{P}\equiv 1.22\times 10^{19}~giga-electronvolts (GeV). Such a high-energy universe would have existed only right after the Big Bang and it is inaccessible by human technologies. On the other hand, it is speculated that the effects of QG may exist in our low-energy vacuum, but are suppressed by the Planck energy as EP1E_{P}^{-1} (1019\sim 10^{-19}~GeV1^{-1}), EP2E_{P}^{-2} (1038\sim 10^{-38}~GeV2^{-2}), or its higher powers. The coupling of particles to these effects is too small to measure in kinematic observables, but the phase shift of neutrino waves could cause observable flavour conversions. Here, we report the first result of neutrino interferometry~\cite{Aartsen:2017ibm} using astrophysical neutrino flavours to search for new space-time structure. We did not find any evidence of anomalous flavour conversion in IceCube astrophysical neutrino flavour data. We place the most stringent limits of any known technologies, down to 104210^{-42}~GeV2^{-2}, on the dimension-six operators that parameterize the space-time defects for preferred astrophysical production scenarios. For the first time, we unambiguously reach the signal region of quantum-gravity-motivated physics.Comment: The main text is 7 pages with 3 figures and 1 table. The Appendix includes 5 pages with 3 figure

    Searches for Neutrinos from LHAASO ultra-high-energy {\gamma}-ray sources using the IceCube Neutrino Observatory

    Full text link
    Galactic PeVatrons are Galactic sources theorized to accelerate cosmic rays up to PeV in energy. The accelerated cosmic rays are expected to interact hadronically with nearby ambient gas or the interstellar medium, resulting in {\gamma}-rays and neutrinos. Recently, the Large High Altitude Air Shower Observatory (LHAASO) identified 12 {\gamma}-ray sources with emissions above 100 TeV, making them candidates for PeV cosmic-ray accelerators (PeVatrons). While at these high energies the Klein-Nishina effect suppresses exponentially leptonic emission from Galactic sources, evidence for neutrino emission would unequivocally confirm hadronic acceleration. Here, we present the results of a search for neutrinos from these {\gamma}-ray sources and stacking searches testing for excess neutrino emission from all 12 sources as well as their subcatalogs of supernova remnants and pulsar wind nebulae with 11 years of track events from the IceCube Neutrino Observatory. No significant emissions were found. Based on the resulting limits, we place constraints on the fraction of {\gamma}-ray flux originating from the hadronic processes in the Crab Nebula and LHAASOJ2226+6057

    Strong Constraints on Neutrino Nonstandard Interactions from TeV-Scale νμ_{μ} Disappearance at IceCube

    Get PDF
    We report a search for nonstandard neutrino interactions (NSI) using eight years of TeV-scale atmospheric muon neutrino data from the IceCube Neutrino Observatory. By reconstructing incident energies and zenith angles for atmospheric neutrino events, this analysis presents unified confidence intervals for the NSI parameter εμτ. The best-fit value is consistent with no NSI at a p value of 25.2%. With a 90% confidence interval of −0.0041≤εμτ≤0.0031 along the real axis and similar strength in the complex plane, this result is the strongest constraint on any NSI parameter from any oscillation channel to date

    Searches for Neutrinos from Gamma-Ray Bursts using the IceCube Neutrino Observatory

    Get PDF
    Gamma-ray bursts (GRBs) are considered as promising sources of ultra-high-energy cosmic rays (UHECRs) due to their large power output. Observing a neutrino flux from GRBs would offer evidence that GRBs are hadronic accelerators of UHECRs. Previous IceCube analyses, which primarily focused on neutrinos arriving in temporal coincidence with the prompt gamma rays, found no significant neutrino excess. The four analyses presented in this paper extend the region of interest to 14 days before and after the prompt phase, including generic extended time windows and targeted precursor searches. GRBs were selected between May 2011 and October 2018 to align with the data set of candidate muon-neutrino events observed by IceCube. No evidence of correlation between neutrino events and GRBs was found in these analyses. Limits are set to constrain the contribution of the cosmic GRB population to the diffuse astrophysical neutrino flux observed by IceCube. Prompt neutrino emission from GRBs is limited to \lesssim1% of the observed diffuse neutrino flux, and emission on timescales up to 10410^4 s is constrained to 24% of the total diffuse flux
    corecore