34 research outputs found

    Yeasts associated with the production of distilled alcoholic beverages

    Get PDF
    Distilled alcoholic beverages are produced firstly by fermenting sugars emanating from cereal starches (in the case of whiskies), sucrose-rich plants (in the case of rums), fructooligosaccharide-rich plants (in the case of tequila) or from fruits (in the case of brandies). Traditionally, such fermentations were conducted in a spontaneous fashion, relying on indigenous microbiota, including wild yeasts. In modern practices, selected strains of Saccharomyces cerevisiae are employed to produce high levels of ethanol together with numerous secondary metabolites (eg. higher alcohols, esters, carbonyls etc.) which greatly influence the final flavour and aroma characteristics of spirits following distillation of the fermented wash. Therefore, distillers, like winemakers, must carefully choose their yeast strain which will be very important in providing the alcohol content and the sensory profiles of spirit beverages. This Chapter discusses yeast and fermentation aspects associated with the production of selected distilled spirits and highlights similarities and differences with the production of wine

    Search for three-jet resonances in pp Collisions at √s=7  TeV

    Get PDF
    This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0.-- et al.Results are reported from a search for the production of three-jet resonances in pp collisions at a center-of-mass energy √s=7  TeV. The study uses the data sample collected by the CMS experiment at the LHC in 2011, corresponding to an integrated luminosity of 5.0fb -1. Events with high jet multiplicity and a large scalar sum of jet transverse momenta are analyzed for the presence of resonances in the three-jet invariant mass spectrum. No evidence for a narrow resonance is found in the data, and limits are set on the cross section for gluino pair production in an R-parity-violating supersymmetry model, for gluino masses greater than 280 GeV. Assuming a branching fraction for gluino decay into three jets of 100%, gluino masses below 460 GeV are excluded at 95% confidence level. These results significantly extend the range of previous limits. © 2012 CERN.European Commission; Federal Ministry of Science, Research and Economy (Austria); ); Agency for Innovation by Science and Technology (Belgium); Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brasil); Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro; Fundação de Amparo à Pesquisa do Estado de São Paulo; Ministry of Science and Technology of the People's Republic of China; National Natural Science Foundation of China; Colciencias (Colombia); Ministry of Science, Education and Sports of the Republic of Croatia; Research Promotion Foundation (Cyprus); Centre National de la Recherche Scientifique (France); Bundesministerium für Bildung und Forschung (Deutschland); Deutsche Forschungsgemeinschaft; General Secretariat of Research and Technology (Greece); Helsinki Institute of Physics; National Office for Research and Technology (Hungary); Institute for Research in Fundamental Sciences (Iran); Science Foundation Ireland; Istituto Nazionale di Fisica Nucleare (Italia); Compagnia di San Paolo (Italia); National Research Foundation of Korea; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (México); Consejo Nacional de Ciencia y Tecnología (México); Secretaría de Educación Pública (México); Universidad Autónoma de San Luis Potosí; Ministry of Science and Innovation (New Zealand); Pakistan Atomic Energy Commission; National Science Center (Poland); Fundação para a Ciência e a Tecnologia (Portugal); Joint Institute for Nuclear Research (Russia); Russian Foundation for Basic Research; Ministry of Education, Science and Technological Development (Serbia); Ministerio de Ciencia e Innovación (España); Swiss National Science Foundation.Peer Reviewe

    Measurement of the Pseudorapidity and Centrality Dependence of the Transverse Energy Density in Pb-Pb Collisions at √sNN=2.76  TeV

    Get PDF
    The transverse energy (E-T) in Pb-Pb collisions at 2.76 TeV nucleon-nucleon center-of-mass energy (root s(NN)) has been measured over a broad range of pseudorapidity (eta) and collision centrality by using the CMS detector at the LHC. The transverse energy density per unit pseudorapidity (dE(T)/d eta) increases faster with collision energy than the charged particle multiplicity. This implies that the mean energy per particle is increasing with collision energy. At all pseudorapidities, the transverse energy per participating nucleon increases with the centrality of the collision. The ratio of transverse energy per unit pseudorapidity in peripheral to central collisions varies significantly as the pseudorapidity increases from eta = 0 to vertical bar eta vertical bar = 5.0. For the 5% most central collisions, the energy density per unit volume is estimated to be about 14 GeV/fm(3) at a time of 1 fm/c after the collision. This is about 100 times larger than normal nuclear matter density and a factor of 2.6 times higher than the energy density reported at root s(NN) = 200 GeV at the Relativistic Heavy Ion Collider

    Measurement of the differential cross section for isolated prompt photon production in pp collisions at 7 TeV

    Get PDF
    A measurement of the differential cross section for the inclusive production of isolated prompt photons in proton-proton collisions at a center-of-mass energy of 7 TeV is presented. The data sample corresponds to an integrated luminosity of 36 pb(-1) recorded by the CMS detector at the LHC. The measurement covers the pseudorapidity range vertical bar eta vertical bar < 2.5 and the transverse energy range 25 < E-T < 400 GeV, corresponding to the kinematic region 0.007 < x(T) < 0.114. Photon candidates are identified with two complementary methods, one based on photon conversions in the silicon tracker and the other on isolated energy deposits in the electromagnetic calorimeter. The measured cross section is presented as a function of E-T in four pseudorapidity regions. The next-to-leading-order perturbative QCD calculations are consistent with the measured cross section

    Measurement of the weak mixing angle with the Drell-Yan process in proton-proton collisions at the LHC

    Get PDF
    This is the Pre-Print version of the Article - Copyright @ 2011 APSA multivariate likelihood method to measure electroweak couplings with the Drell-Yan process at the LHC is presented. The process is described by the dilepton rapidity, invariant mass, and decay angle distributions. The decay angle ambiguity due to the unknown assignment of the scattered constituent quark and antiquark to the two protons in a collision is resolved statistically using correlations between the observables. The method is applied to a sample of dimuon events from proton-proton collisions at sqrt(s) = 7 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 1.1 inverse femtobarns. From the dominant u-ubar, d-dbar to gamma*/Z to opposite sign dimuons process, the effective weak mixing angle parameter is measured to be sin^2(theta[eff]) = 0.2287 +/- 0.0020 (stat.) +/- 0.0025 (syst.). This result is consistent with measurements from other processes, as expected within the standard model
    corecore