4,354 research outputs found

    Tensors in modelling multi-particle interactions

    Full text link
    In this work we present recent results on application of low-rank tensor decompositions to modelling of aggregation kinetics taking into account multi-particle collisions (for three and more particles). Such kinetics can be described by system of nonlinear differential equations with right-hand side requiring NDN^D operations for its straight-forward evaluation, where NN is number of particles size classes and DD is number of particles colliding simultaneously. Such a complexity can be significantly reduced by application low rank tensor decompositions (either Tensor Train or Canonical Polyadic) to acceleration of evaluation of sums and convolutions from right-hand side. Basing on this drastic reduction of complexity for evaluation of right-hand side we further utilize standard second order Runge-Kutta time integration scheme and demonstrate that our approach allows to obtain numerical solutions of studied equations with very high accuracy in modest times. We also show preliminary results on parallel scalability of novel approach and conclude that it can be efficiently utilized with use of supercomputers.Comment: LaTEX, 8 pages, 3 figures, submitted to proceedings of LSSC'19 conference, Sozopol, Bulgari

    Boundary contributions to specific heat and susceptibility in the spin-1/2 XXZ chain

    Full text link
    Exact low-temperature asymptotic behavior of boundary contribution to specific heat and susceptibility in the one-dimensional spin-1/2 XXZ model with exchange anisotropy 1/2 < \Delta \le 1 is analytically obtained using the Abelian bosonization method. The boundary spin susceptibility is divergent in the low-temperature limit. This singular behavior is caused by the first-order contribution of a bulk leading irrelevant operator to boundary free energy. The result is confirmed by numerical simulations of finite-size systems. The anomalous boundary contributions in the spin isotropic case are universal.Comment: 6 pages, 3 figures; corrected typo

    Strong quantum memory at resonant Fermi edges revealed by shot noise

    Get PDF
    Studies of non-equilibrium current fluctuations enable assessing correlations involved in quantum transport through nanoscale conductors. They provide additional information to the mean current on charge statistics and the presence of coherence, dissipation, disorder, or entanglement. Shot noise, being a temporal integral of the current autocorrelation function, reveals dynamical information. In particular, it detects presence of non-Markovian dynamics, i.e., memory, within open systems, which has been subject of many current theoretical studies. We report on low-temperature shot noise measurements of electronic transport through InAs quantum dots in the Fermi-edge singularity regime and show that it exhibits strong memory effects caused by quantum correlations between the dot and fermionic reservoirs. Our work, apart from addressing noise in archetypical strongly correlated system of prime interest, discloses generic quantum dynamical mechanism occurring at interacting resonant Fermi edges.Comment: 6 pages, 3 figure

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO
    corecore