57 research outputs found

    Dosimetry of Cobalt 60 Gamma Chamber

    Get PDF
    Ferrous sulphate-benzoic acid-xylen(tl orange (FBX) dosimetric system is linear in the range fl|0m 0.01 Gy to 10 Gy and can be used in the case of a nuclear accident, for documenting clinical doses in total-body irradiations in radiation therapy as well as for measuring daily radiation dose during external beam therapy because of its tissue-equivallency. FBX system is stable up to 15 days in the range 15 - 60 degree centigrade. It is independent of photon energy up to 3 ke V and is fairly dose rate in dependent in the range from 0.01 to 2.5 Gy/min. Besides its use in radiation therapy, external beam therapy and nuclear accidents, the present study shows that this dosimeter can be effectively used for determining positional variation inside the gamma chamber. This has been detected by placing dosimetric solutions in small bottles kept in two racks of the phantom in a symmetrical fashion. Average variations in two tracks were found to be 2.74 per cent, 0.33 per cent, 4 per cent and 4.83 per cent

    Structure of Polyethylene Prepared Between Non Metallic Electrodes

    Get PDF
    The X-Ray diffraction method has been applied to study the structural changes that polyethylene may undergo when prepared between glass and perspex electrodes at different temperatures. The results indicate that polyethylene does not undergo any considerable structural change under the prevailing conditions

    Midazolam infusion and disease severity affect the level of sedation in children: a parametric time-to-event analysis

    Get PDF
    Aim In critically ill mechanically ventilated children, midazolam is used first line for sedation, however its exact sedative effects have been difficult to quantify. In this analysis, we use parametric time-to-event (PTTE) analysis to quantify the effects of midazolam in critically ill children.Methods In the PTTE analysis, data was analyzed from a published study in mechanically ventilated children in which blinded midazolam or placebo infusions were administered during a sedation interruption phase until, based on COMFORT-B and NISS scores, patients became undersedated and unblinded midazolam was restarted. Using NONMEM (R) v.7.4.3., restart of unblinded midazolam was analysed as event. Patients in the trial were divided into internal and external validation cohorts prior to analysis.Results Data contained 138 events from 79 individuals (37 blinded midazolam; 42 blinded placebo). In the PTTE model, the baseline hazard was best described by a constant function. Midazolam reduced the hazard for restart of unblinded midazolam due to undersedation by 51%. In the blinded midazolam group, time to midazolam restart was 26 h versus 58 h in patients with low versus high disease severity upon admission (PRISM II 21), respectively. For blinded placebo, these times were 14 h and 33 h, respectively. The model performed well in an external validation with 42 individuals.Conclusion The PTTE analysis effectively quantified the effect of midazolam in prolonging sedation and also the influence of disease severity on sedation in mechanically ventilated critically ill children, and provides a valuable tool to quantify the effect of sedatives. Clinical trial number and registry URL: Netherlands Trial Register, Trial NL1913 (NTR2030), date registered 28 September 2009.Pharmacolog

    The Risk Factors of Seasonal Hyperacute Panuveitis

    Get PDF
    Background: Seasonal Hyperacute Panuveitis (SHAPU) is an eye disease of unclear aetiology occurring cyclically during the autumn in odd years in Nepal causing blindness within a week. This study is the first of its type to investigate the risk factors of SHAPU. Methods: A multicentric national level case–control study was performed during the 2017 SHAPU outbreak. Cases were matched to controls in a 1:3 ratio based on age, sex and geographic area. Questionnaire-based personal interview was used and risk factors were categorized as biological and behavioral. For univariate analysis, frequency, median and interquartile range was calculated. Chi-squared test with/without continuity correction and Fisher’s exact test were used. Multivariate conditional logistic regressions were used for all the independent variables for p <0.1 in the univariate analyses. Results: We identified 35 cases and 105 controls; 71.4% were children≤16 years (38-day infant to 50-year-old). All were immunocompetent individuals, males were 57.1% and females 42.9%. Potential risks such as visible moths/butterfly activity, contact with livestock, and attending mass gatherings of people were not reported more frequently in cases vs controls in univariate analyses. Differences in possibly protective factors such as self-reported mosquito net use, light off at night while sleeping, and habit of hands/face washing after physical contact/touch with any insects/butterflies/birds were not statistically significant between both groups. In multivariate model, SHAPU cases were significantly more likely than controls to report physical contact with butterflies/white moths (Adjusted OR:6.89; CI:2.79–17.01,p < .001). Conclusions: Direct physical contact with butterflies/moths was associated with significantly increased odds of SHAPU cases

    Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018

    Get PDF
    Anemia is a globally widespread condition in women and is associated with reduced economic productivity and increased mortality worldwide. Here we map annual 2000–2018 geospatial estimates of anemia prevalence in women of reproductive age (15–49 years) across 82 low- and middle-income countries (LMICs), stratify anemia by severity and aggregate results to policy-relevant administrative and national levels. Additionally, we provide subnational disparity analyses to provide a comprehensive overview of anemia prevalence inequalities within these countries and predict progress toward the World Health Organization’s Global Nutrition Target (WHO GNT) to reduce anemia by half by 2030. Our results demonstrate widespread moderate improvements in overall anemia prevalence but identify only three LMICs with a high probability of achieving the WHO GNT by 2030 at a national scale, and no LMIC is expected to achieve the target in all their subnational administrative units. Our maps show where large within-country disparities occur, as well as areas likely to fall short of the WHO GNT, offering precision public health tools so that adequate resource allocation and subsequent interventions can be targeted to the most vulnerable populations.Peer reviewe

    Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018

    Get PDF

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2•72 (95% uncertainty interval [UI] 2•66–2•79) in 2000 to 2•31 (2•17–2•46) in 2019. Global annual livebirths increased from 134•5 million (131•5–137•8) in 2000 to a peak of 139•6 million (133•0–146•9) in 2016. Global livebirths then declined to 135•3 million (127•2–144•1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2•1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27•1% (95% UI 26•4–27•8) of global livebirths. Global life expectancy at birth increased from 67•2 years (95% UI 66•8–67•6) in 2000 to 73•5 years (72•8–74•3) in 2019. The total number of deaths increased from 50•7 million (49•5–51•9) in 2000 to 56•5 million (53•7–59•2) in 2019. Under-5 deaths declined from 9•6 million (9•1–10•3) in 2000 to 5•0 million (4•3–6•0) in 2019. Global population increased by 25•7%, from 6•2 billion (6•0–6•3) in 2000 to 7•7 billion (7•5–8•0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58•6 years (56•1–60•8) in 2000 to 63•5 years (60•8–66•1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation: Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens
    corecore