440 research outputs found
Bcc He as a Coherent Quantum Solid
In this work we investigate implications of the quantum nature of bcc %
He. We show that it is a unique solid phase with both a lattice structure and
an Off-Diagonal Long Range Order of coherently oscillating local electric
dipole moments. These dipoles arise from the local motion of the atoms in the
crystal potential well, and oscillate in synchrony to reduce the dipolar
interaction energy. The dipolar ground-state is therefore found to be a
coherent state with a well defined global phase and a three-component complex
order parameter. The condensation energy of the dipoles in the bcc phase
stabilizes it over the hcp phase at finite temperatures. We further show that
there can be fermionic excitations of this ground-state and predict that they
form an optical-like branch in the (110) direction. A comparison with
'super-solid' models is also discussed.Comment: 12 pages, 8 figure
Glide and Superclimb of Dislocations in Solid He
Glide and climb of quantum dislocations under finite external stress,
variation of chemical potential and bias (geometrical slanting) in Peierls
potential are studied by Monte Carlo simulations of the effective string model.
We treat on unified ground quantum effects at finite temperatures . Climb at
low is assisted by superflow along dislocation core -- {\it superclimb}.
Above some critical stress avalanche-type creation of kinks is found. It is
characterized by hysteretic behavior at low . At finite biases gliding
dislocation remains rough even at lowest -- the behavior opposite to
non-slanted dislocations. In contrast to glide, superclimb is characterized by
quantum smooth state at low temperatures even for finite bias. In some
intermediate -range giant values of the compressibility as well as
non-Luttinger type behavior of the core superfluid are observed.Comment: Updated version submitted to JLTP as QFS2010 proceedings; 11 pages, 6
figure
Quantum Andreev Oscillations in normal-superconducting-normal nanostructures
We show that the voltage drop of specially prepared
normal-superconducting-normal nanostructures show quantum Andreev oscillations
as a function of magnetic field or input current. These oscillations are due to
the interference of the electron wave function between the normal parts of the
structure that act as reflective interfaces, i.e. our devices behave as a
Fabry-Perot interferometer for conduction electrons. The observed oscillations
and field periods are well explained by theory.Comment: 5 pages and 4 figure
Magnetotransport in two-dimensional electron gas at large filling factors
We derive the quantum Boltzmann equation for the two-dimensional electron gas
in a magnetic field such that the filling factor . This equation
describes all of the effects of the external fields on the impurity collision
integral including Shubnikov-de Haas oscillations, smooth part of the
magnetoresistance, and non-linear transport. Furthemore, we obtain quantitative
results for the effect of the external microwave radiation on the linear and
non-linear transport in the system. Our findings are relevant for the
description of the oscillating resistivity discovered by Zudov {\em et al.},
zero-resistance state discovered by Mani {\em et al.} and Zudov {\em et al.},
and for the microscopic justification of the model of Andreev {\em et al.}. We
also present semiclassical picture for the qualitative consideration of the
effects of the applied field on the collision integral.Comment: 28 pages, 19 figures; The discussion of the role of the effect of the
microwave field on the distribution function is revised (see also
cond-mat/0310668). Accepted in Phys. Rev.
Critical velocities in two-component superfluid Bose gases
On the ground of the Landau criterion we study the behavior of critical
velocities in a superfluid two-component Bose gas. It is found that under
motion of the components with different velocities the velocity of each
component should not be lower than a minimum phase velocity of elementary
excitations (s_). The Landau criterion yields a relation between the critical
velocities of the components (v_{c1}, v_{c2}). The velocity of one or even both
components may exceed s_. The maximum value of the critical velocity of a given
component can be reached when the other component does not move. The approach
is generalized for a two-component condensate confined in a cylindrical
harmonic potential.
PACS numbers: 03.75.Kk,03.75.MnComment: 6 pages, 1 figure
The magnetic ordering in the mixed valence compound beta-Na0.33V2O5
The low-temperature electron spin resonance (ESR) spectra and the static
magnetization data obtained for the stoichiometric single crystals of
-NaVO indicate that this quasi-one-dimensional mixed
valence (V4+/V5+) compound demonstrates at K the phase transition into
the canted antiferromagnetically ordered state. The spontaneous magnetization
of per V ion was found to be oriented along
the two-fold axis of the monoclinic structure, the vector of
antiferromagnetism is aligned with the axis and the Dzyaloshinsky vector is
parallel to the -axis. The experimental data were successfully described in
the frame of the macroscopic spin dynamics and the following values for the
macroscopic parameters of the spin system were obtained: the Dzyaloshinsky
field kOe, the energy gaps of two branches of the spin wave spectrum
GHz and GHz.Comment: 5 pages, 6 figure
Interplay of non-linear elasticity and dislocation-induced superfluidity in solid Helium-4
The mechanism of the roughening induced partial depinning of gliding
dislocations from Helium-3 impurities is proposed as an alternative to the
standard "boiling off". We give a strong argument that Helium-3 remains bound
to dislocations even at large temperatures due to very long equilibration
times. A scenario leading to the similarity between elastic and superfluid
responses of solid Helium-4 is also discussed. Its main ingredient is a strong
suppression of the superfluidity along dislocation cores by dislocation kinks
(D. Aleinikava, et. al., arXiv:0812.0983). These kinks, on one hand, determine
the temperature and Helium-3 dependencies of the generalized shear modulus and,
on the other hand, control the superfluid response. Several proposals for
theoretical and experimental studies of solid Helium-4 are suggested.Comment: final version accepted to the special JLTP issue on Supersolid, 16
pages, 6 figures: typos corrected, more explanations give
Anomalous WW-Gamma Vertex in Gamma-p Collision
The potential of LC+HERAp based Gamma-p collider to probe WW-Gamma vertex is
presented through the discussion of sensitivity to anomalous couplings and P_T
distribution of the final quark. The limits of -0.04<\Delta\kappa<0.04 and
-0.11<\lambda<0.11 at 95% C.L. can be reached with integrated luminosity
200(1/pb). The limit for \Delta\kappa is comparable to one which is expected
from LHC. The bounds are also obtained from corresponding ep collider using
Weizsacker-Williams Approximation to compare with real photons.Comment: 8 pages, 2 eps figure
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
- …