421 research outputs found

    Poststroke neurological improvement within 7 days is associated with subsequent deterioration

    Get PDF
    Background and Purpose: Improvement in the National Institutes of Health Stroke Scale (NIHSS) 24 hours after stroke has been associated with subsequent neurological deterioration. We hypothesized that a similar association would be apparent for events occurring after 7 days, when acute changes from edema and herniation are less common. We evaluated the degree of NIHSS improvement at 7 days (recovery) as a predictor of subsequent neurological deterioration from day 7 to day 90. Methods: We studied all patients of the Glycine Antagonist (gavestinel) In Neuroprotection (GAIN) International Trial with ischemic stroke alive at day 7, excluding patients with hemorrhagic events and deaths from nonstroke-related causes. The GAIN International Trial was a randomized, double-blind, placebo-controlled, and parallel-group trial; because the study drug had no effect on stroke outcome, treatment groups were combined for this analysis. Neurological deterioration was assessed by the combined measure, including: (1) stroke-related events recorded as “serious adverse events,” (2) recurrent stroke recorded on a separate case report form, and (3) any NIHSS worsening. Results: Among 1187 patients included, 25% had >65% recovery. Deterioration was more prevalent in the group with &#62;65% early recovery (15.5% versus 10.3%; P=0.01). Logistic regression modeling indicated that recovery was associated with subsequent neurological deterioration (odds ratio, 1.2; 95% CI, 1.1 to 1.3, per 10% recovery) after adjusting for age, NIHSS at 7 days, and stroke subtype. Conclusions: Substantial neurological recovery at 7 days is associated with subsequent neurological deterioration.</p

    Defining the limitations of measurements from Doppler spectral recordings

    Get PDF
    AbstractPurpose:The purpose of this study was to determine whether Doppler measurements of peak velocity and four other quantitative measures of spectral shape are affected significantly by the site of the Doppler recording in relation to the location of the maximum stenosis.Method: Continuous-wave and pulsed Doppler recordings were made distal to a 70% (area reduction or 45% diameter reduction) asymmetric stenosis in an in vitro flow model under steady and pulsatile flow conditions. Recordings were taken at six different locations proximal and distal to the stenosis. A photochromic dye technique was used to visualize the actual flow field in the model.Results: Distal to the stenosis, the flow visualization results demonstrated a strong radial and axial variation of the velocity field and thus explained why the Doppler measurements of peak frequency and spectral broadening were strongly dependent on the recording site. The peak frequency was maximum within the throat of the stenosis and returned to the prestenotic value five tube diameters distal to the stenosis. Other measurements of spectral broadening and spectral shape varied greatly depending on the location of the recording site in the poststenotic region. Higher order spectral moments such as the coefficient of kurtosis were found to exhibit large temporal variability, which makes them inappropriate as diagnostic indicators.Conclusions: Because of the complex nature of the poststenotic flow field, these results clearly demonstrate that no single Doppler measurement can accurately quantify the severity of a stenosis. Of the Doppler measurements only peak velocity is related to the severity of stenosis. Reproducible peak velocity measurements are obtained only if the Doppler sample volume is positioned at or very near the throat of the stenosis and at an appropriate radial site that may not necessarily be at the center of the vessel. (J Vasc Surg 1996;24:34-45.

    A framework for assessing clinical trial site readiness

    Get PDF
    Clinical trial processes are unnecessarily inefficient and costly, slowing the translation of medical discoveries into treatments for people living with disease. To reduce redundancies and inefficiencies, a group of clinical trial experts developed a framework for clinical trial site readiness based on existing trial site qualifications from sponsors. The site readiness practices are encompassed within six domains: research team, infrastructure, study management, data collection and management, quality oversight, and ethics and safety. Implementation of this framework for clinical trial sites would reduce inefficiencies in trial conduct and help prepare new sites to enter the clinical trials enterprise, with the potential to improve the reach of clinical trials to underserved communities. Moreover, the framework holds benefits for trial sponsors, contract research organizations, trade associations, trial participants, and the public. For novice sites considering future trials, we provide a framework for site preparation and the engagement of stakeholders. For experienced sites, the framework can be used to assess current practices and inform and engage sponsors, staff, and participants. Details in the supplementary materials provide easy access to key regulatory documents and resources. Invited perspective articles provide greater depth from a systems, DEIA (diversity, equity, inclusion, and accessibility) and decentralized trials perspective

    Isospin Effects in Nuclear Multifragmentation

    Full text link
    We develop an improved Statistical Multifragmentation Model that provides the capability to calculate calorimetric and isotopic observables with precision. With this new model we examine the influence of nuclear isospin on the fragment elemental and isotopic distributions. We show that the proposed improvements on the model are essential for studying isospin effects in nuclear multifragmentation. In particular, these calculations show that accurate comparisons to experimental data require that the nuclear masses, free energies and secondary decay must be handled with higher precision than many current models accord.Comment: 46 pages, 16 figure

    A High Statistics Search for Ultra-High Energy Gamma-Ray Emission from Cygnus X-3 and Hercules X-1

    Full text link
    We have carried out a high statistics (2 Billion events) search for ultra-high energy gamma-ray emission from the X-ray binary sources Cygnus X-3 and Hercules X-1. Using data taken with the CASA-MIA detector over a five year period (1990-1995), we find no evidence for steady emission from either source at energies above 115 TeV. The derived upper limits on such emission are more than two orders of magnitude lower than earlier claimed detections. We also find no evidence for neutral particle or gamma-ray emission from either source on time scales of one day and 0.5 hr. For Cygnus X-3, there is no evidence for emission correlated with the 4.8 hr X-ray periodicity or with the occurrence of large radio flares. Unless one postulates that these sources were very active earlier and are now dormant, the limits presented here put into question the earlier results, and highlight the difficulties that possible future experiments will have in detecting gamma-ray signals at ultra-high energies.Comment: 26 LaTeX pages, 16 PostScript figures, uses psfig.sty to be published in Physical Review

    Perception of Relative Depth Interval: Systematic Biases in Perceived Depth

    Get PDF
    Given an estimate of the binocular disparity between a pair of points and an estimate of the viewing distance, or knowledge of eye position, it should be possible to obtain an estimate of their depth separation. Here we show that, when points are arranged in different vertical geometric configurations across two intervals, many observers find this task difficult. Those who can do the task tend to perceive the depth interval in one configuration as very different from depth in the other configuration. We explore two plausible explanations for this effect. The first is the tilt of the empirical vertical horopter: Points perceived along an apparently vertical line correspond to a physical line of points tilted backwards in space. Second, the eyes can rotate in response to a particular stimulus. Without compensation for this rotation, biases in depth perception would result. We measured cyclovergence indirectly, using a standard psychophysical task, while observers viewed our depth configuration. Biases predicted from error due either to cyclovergence or to the tilted vertical horopter were not consistent with the depth configuration results. Our data suggest that, even for the simplest scenes, we do not have ready access to metric depth from binocular disparity.</jats:p

    Search for the standard model Higgs boson decaying to a bbˉb\bar{b} pair in events with no charged leptons and large missing transverse energy using the full CDF data set

    Get PDF
    We report on a search for the standard model Higgs boson produced in association with a vector boson in the full data set of proton-antiproton collisions at s=1.96\sqrt{s} = 1.96 TeV recorded by the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.45 fb−1^{-1}. We consider events having no identified charged lepton, a transverse energy imbalance, and two or three jets, of which at least one is consistent with originating from the decay of a bb quark. We place 95% credibility level upper limits on the production cross section times standard model branching fraction for several mass hypotheses between 90 and 150GeV/c2150 \mathrm{GeV}/c^2. For a Higgs boson mass of 125GeV/c2125 \mathrm{GeV}/c^2, the observed (expected) limit is 6.7 (3.6) times the standard model prediction.Comment: Accepted by Phys. Rev. Let

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
    • …
    corecore