24 research outputs found

    Coupling Experiment and Simulation in Electromagnetic Forming Using Photon Doppler Velocimetry

    Get PDF
    Modeling electromagnetic forming processes is in many ways simpler than modeling traditional metal forming processes. In electromagnetic forming the problem is often dominated by inertial acceleration by a magnetic field. This is a much better posed problem than the more traditional ones that are often dominated by complex three dimensional constitutive behavior and frictional effects. However, important aspects of the problem are dominated by the constitutive properties of the material, and often electromagnetic forming is performed in a regime where there is little reliable material strength data. Strain rates are often high (102 to 104 s-1 is the typical range for electromagnetic forming). Also, heat is generated both by ohmic heating as well as by plastic deformation, and peak temperatures can be quite high. Also, while hightemperature, high-strain-rate data is scarce, there is little or no data in cases where temperature rises significantly over very short times (tens of micro-seconds) as happens in electromagnetic metal forming. This rapid temperature rise is very important to the material response because the short time scales largely preclude the material from recovery and recrystallization processes and precipitates cannot dissolve as they normally would in an age-hardening alloy in these time scales. This presentation will show how advanced instrumentation, particularly the Photon Doppler Velocimeter (PDV) can be coupled with electromagnetic forming and provide both avenues to characterize material as well as to provide very critical tests of numerical models of the process

    Variability in the analysis of a single neuroimaging dataset by many teams

    Get PDF
    Data analysis workflows in many scientific domains have become increasingly complex and flexible. To assess the impact of this flexibility on functional magnetic resonance imaging (fMRI) results, the same dataset was independently analyzed by 70 teams, testing nine ex-ante hypotheses. The flexibility of analytic approaches is exemplified by the fact that no two teams chose identical workflows to analyze the data. This flexibility resulted in sizeable variation in hypothesis test results, even for teams whose statistical maps were highly correlated at intermediate stages of their analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Importantly, meta-analytic approaches that aggregated information across teams yielded significant consensus in activated regions across teams. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset. Our findings show that analytic flexibility can have substantial effects on scientific conclusions, and demonstrate factors related to variability in fMRI. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for multiple analyses of the same data. Potential approaches to mitigate issues related to analytical variability are discussed

    Variability in the analysis of a single neuroimaging dataset by many teams

    Get PDF
    Data analysis workflows in many scientific domains have become increasingly complex and flexible. To assess the impact of this flexibility on functional magnetic resonance imaging (fMRI) results, the same dataset was independently analyzed by 70 teams, testing nine ex-ante hypotheses. The flexibility of analytic approaches is exemplified by the fact that no two teams chose identical workflows to analyze the data. This flexibility resulted in sizeable variation in hypothesis test results, even for teams whose statistical maps were highly correlated at intermediate stages of their analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Importantly, meta-analytic approaches that aggregated information across teams yielded significant consensus in activated regions across teams. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset. Our findings show that analytic flexibility can have substantial effects on scientific conclusions, and demonstrate factors related to variability in fMRI. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for multiple analyses of the same data. Potential approaches to mitigate issues related to analytical variability are discussed

    Composition, crystallization conditions and genesis of sulfide-saturated parental melts of olivine-phyric rocks from Kamchatsky Mys (Kamchatka, Russia)

    Get PDF
    Highlights • Parental melts of sulfide-bearing KM rocks have near primary MORB-like composition. • Crystallization of these S-saturated melts occurred in near-surface conditions. • Extensive fractionation and crustal assimilation are not the causes of S-saturation. • S content in melts can be restored by accounting for daughter sulfide globules. Abstract Sulfide liquids that immiscibly separate from silicate melts in different magmatic processes accumulate chalcophile metals and may represent important sources of the metals in Earth's crust for the formation of ore deposits. Sulfide phases commonly found in some primitive mid-ocean ridge basalts (MORB) may support the occurrence of sulfide immiscibility in the crust without requiring magma contamination and/or extensive fractionation. However, the records of incipient sulfide melts in equilibrium with primitive high-Mg olivine and Cr-spinel are scarce. Sulfide globules in olivine phenocrysts in picritic rocks of MORB-affinity at Kamchatsky Mys (Eastern Kamchatka, Russia) represent a well-documented example of natural immiscibility in primitive oceanic magmas. Our study examines the conditions of silicate-sulfide immiscibility in these magmas by reporting high precision data on the compositions of Cr-spinel and silicate melt inclusions, hosted in Mg-rich olivine (86.9–90 mol% Fo), which also contain globules of magmatic sulfide melt. Major and trace element contents of reconstructed parental silicate melts, redox conditions (ΔQFM = +0.1 ± 0.16 (1σ) log. units) and crystallization temperature (1200–1285 °C), as well as mantle potential temperatures (~1350 °C), correspond to typical MORB values. We show that nearly 50% of sulfur could be captured in daughter sulfide globules even in reheated melt inclusions, which could lead to a significant underestimation of sulfur content in reconstructed silicate melts. The saturation of these melts in sulfur appears to be unrelated to the effects of melt crystallization and crustal assimilation, so we discuss the reasons for the S variations in reconstructed melts and the influence of pressure and other parameters on the SCSS (Sulfur Content at Sulfide Saturation)

    Untersuchungen über das specifische Gewicht des Kammerwassers

    No full text

    Os isotope evidence for a differentiated plume head reservoir for the Ontong Java Nui

    No full text
    Previous Os isotopic investigations of lavas from the Ontong Java Plateau observed that geographically widely dispersed samples of differing chemistries preserved an isochron of 123±8 Ma with an initial 187Os/188Os = 0.1289±0.0095. Samples from the Manihiki Plateau, itself a portion of the greater Ontong Java Nui (OJN) magmatic event, preserve a far greater range in Os isotopic signatures than previously reported for the OJP alone. In contrast to the OJP data which points towards a near-chondritic, primitive mantle source for both Kroenke and Kwambaita lavas, the low Ti Manihiki samples preserve 187Os/188Os(i) ranging from 0.1056-0.1714. High Ti Manihiki samples preserve 187Os/188Os(i) = 0.1094-0.1288. Such strongly subchondritic signatures require some component of recycled material in the mantle source, possibly SCLM (TRD low Ti samples ~3.1Ga; and ~2.3-2.6Ga for the high Ti samples). Higher initial Os isotope ratios could indicate the presence of metasomatised lithosphere and/or lower crust. The low Ti samples from Manihiki have been interpreted as the result of a two stage melting process, analogous to boninites, the depleted source of which has itself been metasomatised by a HIMU component entrained within the plume head. Collectively the Ontong Java and Manihiki samples could conceivably contain mantle sourced from both an undifferentiated, near-chondritic source, as well as ancient, unradiogenic recycled sources. Thus the greater OJN province samples a heterogeneous source containing both primitive and recycled components. It is probable that greater degress of partial melting beneath Ontong Java homogenised these heterogeneities, whereas more complex, multi stage melting processes near the plume margin at Manihiki allowed sampling of the inherent heterogeneities within the plume head
    corecore