81 research outputs found

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    Intelligence, educational attainment, and brain structure in those at familial high-risk for schizophrenia or bipolar disorder

    Get PDF
    First-degree relatives of patients diagnosed with schizophrenia (SZ-FDRs) show similar patterns of brain abnormalities and cognitive alterations to patients, albeit with smaller effect sizes. First-degree relatives of patients diagnosed with bipolar disorder (BD-FDRs) show divergent patterns; on average, intracranial volume is larger compared to controls, and findings on cognitive alterations in BD-FDRs are inconsistent. Here, we performed a meta-analysis of global and regional brain measures (cortical and subcortical), current IQ, and educational attainment in 5,795 individuals (1,103 SZ-FDRs, 867 BD-FDRs, 2,190 controls, 942 schizophrenia patients, 693 bipolar patients) from 36 schizophrenia and/or bipolar disorder family cohorts, with standardized methods. Compared to controls, SZ-FDRs showed a pattern of widespread thinner cortex, while BD-FDRs had widespread larger cortical surface area. IQ was lower in SZ-FDRs (d = −0.42, p = 3 × 10−5), with weak evidence of IQ reductions among BD-FDRs (d = −0.23, p =.045). Both relative groups had similar educational attainment compared to controls. When adjusting for IQ or educational attainment, the group-effects on brain measures changed, albeit modestly. Changes were in the expected direction, with less pronounced brain abnormalities in SZ-FDRs and more pronounced effects in BD-FDRs. To conclude, SZ-FDRs and BD-FDRs show a differential pattern of structural brain abnormalities. In contrast, both had lower IQ scores and similar school achievements compared to controls. Given that brain differences between SZ-FDRs and BD-FDRs remain after adjusting for IQ or educational attainment, we suggest that differential brain developmental processes underlying predisposition for schizophrenia or bipolar disorder are likely independent of general cognitive impairment

    Incident acute coronary syndromes in chronic dialysis patients in the United States11The opinions are solely those of the authors and do not represent an endorsement by the Department of Defense or the National Institutes of Health. This is a U.S. Government work. There are no restrictions on its use.

    Get PDF
    Incident acute coronary syndromes in chronic dialysis patients in the United States.BackgroundPatients on dialysis have a disproportionately high rate of cardiovascular disease (CVD). However, the incidence and risk factors for incident acute coronary syndromes (ACS) have not been previously assessed in dialysis patients.MethodsWe analyzed the United States Renal Data System (USRDS) Dialysis Morbidity and Mortality Study (DMMS) Wave II in a historical cohort study of ACS. Data from 3374 patients who started dialysis in 1996 with valid follow-up times were available for analysis, censored at the time of renal transplantation and followed until March 2000. Cox regression analysis was used to model factors associated with time to first hospitalization for ACS (ICD9 code 410.x or 411.x) adjusted for comorbidities, demographic factors, baseline laboratory values, blood pressures and cholesterol levels, type of vascular access, dialysis adequacy, and cardioprotective medications (angiotensin-converting enzyme inhibitors, calcium channel blockers, HMG-CoA reductase inhibitors (statins), beta blockers, and aspirin). Follow-up was 2.19 ± 1.14 years.ResultsThe incidence of ACS was 29/1000 person-years. Factors associated with ACS were older age, the extreme high and low ranges of serum cholesterol level, history of coronary heart disease (CHD), male gender, and diabetes. No cardioprotective medications including statins had a significant association with ACS in this study. However, medications known to reduce mortality after ACS were used in less than 50% of patients with known CHD at the start of the study, and statins were used in less than 10% of patients with CHD.ConclusionsDialysis patients had similar risk factors for ACS compared to the general population. Cardioprotective medications were not associated with a significant benefit, possibly due to their striking underutilization in this at-risk population

    Positive symptoms associate with cortical thinning in the superior temporal gyrus via the ENIGMA-Schizophrenia consortium

    Get PDF
    Objective: Based on the role of the superior temporal gyrus (STG) in auditory processing, language comprehension and self-monitoring, this study aimed to investigate the relationship between STG cortical thickness and positive symptom severity in schizophrenia. Method: This prospective meta-analysis includes data from 1987 individuals with schizophrenia collected at seventeen centres around the world that contribute to the ENIGMA Schizophrenia Working Group. STG thickness measures were extracted from T1-weighted brain scans using FreeSurfer. The study performed a meta-analysis of effect sizes across sites generated by a model predicting left or right STG thickness with a positive symptom severity score (harmonized SAPS or PANSS-positive scores), while controlling for age, sex and site. Secondary models investigated relationships between antipsychotic medication, duration of illness, overall illness severity, handedness and STG thickness. Results: Positive symptom severity was negatively related to STG thickness in both hemispheres (left: βstd = −0.052; P = 0.021; right: βstd = −0.073; P = 0.001) when statistically controlling for age, sex and site. This effect remained stable in models including duration of illness, antipsychotic medication or handedness. Conclusion: Our findings further underline the important role of the STG in hallmark symptoms in schizophrenia. These findings can assist in advancing insight into symptom-relevant pathophysiological mechanisms in schizophrenia

    Genetic copy number variants, cognition and psychosis: a meta-analysis and a family study

    Get PDF
    Article Open Access Published: 27 July 2020 Genetic copy number variants, cognition and psychosis: a meta-analysis and a family study Johan H. Thygesen, Amelia Presman, […]Elvira Bramon Molecular Psychiatry (2020)Cite this article 561 Accesses 10 Altmetric Metricsdetails Abstract The burden of large and rare copy number genetic variants (CNVs) as well as certain specific CNVs increase the risk of developing schizophrenia. Several cognitive measures are purported schizophrenia endophenotypes and may represent an intermediate point between genetics and the illness. This paper investigates the influence of CNVs on cognition. We conducted a systematic review and meta-analysis of the literature exploring the effect of CNV burden on general intelligence. We included ten primary studies with a total of 18,847 participants and found no evidence of association. In a new psychosis family study, we investigated the effects of CNVs on specific cognitive abilities. We examined the burden of large and rare CNVs (>200 kb, <1% MAF) as well as known schizophrenia-associated CNVs in patients with psychotic disorders, their unaffected relatives and controls (N = 3428) from the Psychosis Endophenotypes International Consortium (PEIC). The carriers of specific schizophrenia-associated CNVs showed poorer performance than non-carriers in immediate (P = 0.0036) and delayed (P = 0.0115) verbal recall. We found suggestive evidence that carriers of schizophrenia-associated CNVs had poorer block design performance (P = 0.0307). We do not find any association between CNV burden and cognition. Our findings show that the known high-risk CNVs are not only associated with schizophrenia and other neurodevelopmental disorders, but are also a contributing factor to impairment in cognitive domains such as memory and perceptual reasoning, and act as intermediate biomarkers of disease risk

    What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from theENIGMABipolar Disorder Working Group

    Get PDF
    MRI‐derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta‐Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis‐driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large‐scale meta‐ and mega‐analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large‐scale, collaborative studies of mental illness

    Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium

    Get PDF
    BACKGROUND Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia (N = 11,095), using a single image analysis protocol. METHODS We included T1-weighted data from 46 datasets (5,080 affected individuals and 6,015 controls) from the ENIGMA Consortium. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Analyses were also performed with respect to the use of antipsychotic medication and other clinical variables, as well as age and sex. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029). RESULTS Small average differences between cases and controls were observed for asymmetries in cortical thickness, specifically of the rostral anterior cingulate (d = −0.08, pFDR = 0.047) and the middle temporal gyrus (d = −0.07, pFDR = 0.048), both driven primarily by thinner cortices in the left hemisphere in schizophrenia. These asymmetries were not significantly associated with the use of antipsychotic medication or other clinical variables. Older individuals with schizophrenia showed a stronger average leftward asymmetry of pallidum volume than older controls (d = 0.08, pFDR = 9.0 × 10−3). The multivariate analysis revealed that 7% of the variance across all structural asymmetries was explained by case-control status (F = 1.87, p = 1.25 × 10−5). CONCLUSIONS Altered trajectories of asymmetrical brain development and/or lifespan asymmetry may contribute to schizophrenia pathophysiology. Small case-control differences of brain macro-structural asymmetry may manifest due to more substantial differences at the molecular, cytoarchitectonic or circuit levels, with functional relevance for lateralized cognitive processes

    Genetic variants associated with longitudinal changes in brain structure across the lifespan

    Get PDF
    Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging
    corecore